Skip to main content
Log in

Human Motion Recognition Using E-textile Sensor and Adaptive Neuro-Fuzzy Inference System

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The present paper is intended to introduce a new approach in order to classify human body movements by using textile sensor embedded fabrics. An intelligent processing model embedded in muscle activity pants has been developed based on adaptive neuro-fuzzy inference System (ANFIS) in order to recognize the types of several standard human motions. The processing circuit would digitize motion data from the fabric stretch sensor developed in previous research. Data were continuously flowed into the memory of microcontroller chip and processed in order to get important factors like as input variables of the classification model. The parameters chosen for developing the ANFIS system are the average of amplitude (AMP), the standard deviation of amplitude (STD), and the average cycle (CYC). The final decision on the types of the motions would be stored or transmitted to nearby monitoring devices. In this study, laboratory scale experiments were conducted for four different types of human motions such as walking, jumping, running, and sprinting in order to examine the feasibility of the ANFIS model developed. The accuracy of ANFIS model was compared with results of fuzzy inference system (FIS) model and artificial neural network (ANN) model. As expected, the results indicated that the adaptive neurofuzzy expert system developed could be used as one of the smart simulators in order to recognize human motions with robust and high accuracy classification rate. Based on the test statistics, ANFIS model has been proved to be superior to ANN and FIS in terms of classification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Custodio, F. J. Herrera, G. Lopez, and J. I. Moreno, Sensors, 12, 13907 (2012).

    Article  PubMed  Google Scholar 

  2. O. D. Lara and M. A. Labrador, IEEE Commun. Surv. Tut., 15, 1192 (2013).

    Article  Google Scholar 

  3. Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, and H. Zhu, Adv. Funct. Mater., 24, 4666 (2014).

    Article  CAS  Google Scholar 

  4. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. I. Najafabadi, D. N. Futaba, and K. Hata, Nat. Nanotechnol., 6, 296 (2011).

    Article  CAS  Google Scholar 

  5. B. J. Munro, T. E. Campbell, G. G. Wallace, and J. R. Steele, Sens. Actuator B-Chem., 131, 541 (2008).

    Article  CAS  Google Scholar 

  6. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, Adv. Mater., 26, 5310 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, and G. Tröster, Adv. Mater., 22, 5178 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. V. Kaushik, J. Lee, J. Hong, S. E. Lee, S. A. Lee, J. Seo, C. Mahata, and T. Lee, Nanomaterials, 5, 1493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. M. Castano and A. B. Flatau, Smart Mater. Struct., 23, 53001 (2014).

    Article  CAS  Google Scholar 

  10. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, J. Neuroeng Rehabil., 9, 1743 (2012).

    Article  Google Scholar 

  11. T. Cheng, Y. Zhang, W. Y. Lai, and W. Huang, Adv. Mater., 27, 3349 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, and L. Qu, Adv. Mater., 25, 2326 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, Carbon, 48, 4466 (2010).

    Article  CAS  Google Scholar 

  14. C. Mattmann, F. Clemens, and G. Troster, Sensors, 8, 3719 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. K. Javed, C. M. A. Galib, F. Yang, C. M. Chen, and C. Wang, Synth. Met., 193, 41 (2014).

    Article  CAS  Google Scholar 

  16. L. Qu, M. Tian, X. Hu, Y. Wang, S. Zhu, X. Guo, G. Han, X. Zhang, K. Sun, and X. Tang, Carbon, 80, 565 (2014).

    Article  CAS  Google Scholar 

  17. J. Molina, J. Fernandez, J. C. Ines, A. I. del Rio, J. Bonastre, and F. Cases, Electrochim. Acta, 93, 44 (2013).

    Article  CAS  Google Scholar 

  18. E. Skrzetuska, M. Puchalski, and I. Krucinska, Sensors, 14, 16816 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. C. H. Lim, E. Vats, and C. S. Chan, Pattern Recognit., 48, 1773 (2015).

    Article  Google Scholar 

  20. V. K. Ojha, A. Abraham, and V. Snášel, Eng. Appl. Artif. Intel., 60, 97 (2017).

    Article  Google Scholar 

  21. G. Bosque, I. Campo, and J. Echanobe, Eng. Appl. Artif. Intel., 32, 283 (2014).

    Article  Google Scholar 

  22. A. Bulsari, H. Saxén, A. KrasLawski, P. Koprinkova, and M. Petrova, Eng. Appl. Artif. Intel., 5, 401 (1992).

    Article  Google Scholar 

  23. R. J. P. Alejo, D. S. G. González, M. C. Sifuentes, P. P. Villanueva, L. M. T. Treviño, and B. D. F. Hermosillo, Eng. Appl. Artif. Intel., 26, 1881 (2013).

    Article  Google Scholar 

  24. A. Balbinot and G. Favieiro, Sensors, 13, 2613 (2013).

    Article  PubMed  Google Scholar 

  25. P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, Artifi. Intell., 163, 139 (2005).

    Article  Google Scholar 

  26. J. Han, C. Moraga, and S. Sinne, Eng. Appl. Artif. Intel., 9, 109 (1996).

    Article  Google Scholar 

  27. P. Koprinkova and M. Petrova, Eng. Appl. Artif. Intel., 12, 281 (1999).

    Article  Google Scholar 

  28. F. M. Dias, A. Antunes, and A. M. Mota, Eng. Appl. Artif. Intel., 17, 945 (2004).

    Article  Google Scholar 

  29. C. L. Hui, T. W. Lau, S. F. Ng, and K. C. C. Chan, Text. Res. J., 74, 375 (2004).

    Article  CAS  Google Scholar 

  30. D. Teichmann, A. Kuhn, S. Leonhardt, and M. Walter, Physiol. Meas., 34, 963 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. S.-Y. Chiang, Y.-C. Kan, Y.-S. Chen, Y.-C. Tu, and H.-C. Lin, Sensors, 16, 2053 (2016).

    Article  Google Scholar 

  32. W. Caesarendra, T. Tjahjowidodo, Y. Nico, S. Wahyudati, and L. Nurhasanah, J. Phys.: Conf. Ser., 1007, 012005 (2018).

    Google Scholar 

  33. C. Vu and J. Kim, Fiber. Polym., 18, 1931 (2017).

    Article  Google Scholar 

  34. Z. Chen, L. Wang, and N. H. C. Yung, Pattern Recognit., 44, 2902 (2011).

    Article  Google Scholar 

  35. L. Wang, W. Hu, and T. Tan, Pattern Recognit., 36, 585 (2003).

    Article  Google Scholar 

  36. Y. Y. Jhun, S. W. Jeen, and P. C. Yen, Pattern Recognit., 29, 2213 (2008).

    Article  Google Scholar 

  37. S. Miyamoto, H. Ichihashi, and K. Honda, “Algorithms for Fuzzy Clustering”, pp.9–42, Springer Berlin Heidelberg, Germany, 2008.

    Book  Google Scholar 

  38. R.-E. Precup and H. Hellendoorn, Comput. Ind., 62, 213 (2011).

    Article  Google Scholar 

  39. Z. Zhang and R. Yang, Fiber. Polym., 18, 334 (2017).

    Article  CAS  Google Scholar 

  40. K. Liu, E. Kamalha, J. Wang, and T.-K. Agrawal, Fiber. Polym., 17, 1522 (2016).

    Article  Google Scholar 

  41. J. Kim and Y. Na, Fiber. Polym., 17, 963 (2016).

    Article  CAS  Google Scholar 

  42. F. Zhu, J. Hu, H. Zhang, J. Shi, and X. Yang, Fiber. Polym., 18, 369 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, C., Kim, J. Human Motion Recognition Using E-textile Sensor and Adaptive Neuro-Fuzzy Inference System. Fibers Polym 19, 2657–2666 (2018). https://doi.org/10.1007/s12221-018-8019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8019-0

Keywords

Navigation