Skip to main content
Log in

Spherical Bacterial Cellulose/TiO2 Nanocomposite with Potential Application in Contaminants Removal from Wastewater by Photocatalysis

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Contaminants are often found in aquatic environments, for instance, heavy metals, dyes, parasites, pesticides, hormones and pharmaceuticals. Therefore, large amounts of these contaminants reaches wastewater via industrial and domestic effluents, causing major concern to human health. Heterogeneous photocatalysis is a technique for removing these contaminants in order to achieve better efficiency in water treatment. Then, bacterial cellulose (BC) produced in an agitated culture can form spherical bodies composed of nanofibers with high specific surface area. Moreover, Titanium dioxide (TiO2) is a semiconductor containing high photocatalytic activity capacity. Thus, the main objective in this work was to produce spherical BC/TiO2 nanocomposites for contaminants removal from wastewater by photocatalysis process. The incorporation of TiO2 nanoparticles in the spherical BC matrix was performed by ex situ and in situ methods. In addition, Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) were used as tools of morphological, chemical and thermal characterizations of the nanocomposites. Besides, photocatalysis tests were performed in order to evaluate the removal efficiency of methylene blue from aqueous solutions. The results of these tests exhibited a percentage of methylene blue removal of 70.83 and 89.58 % after 35 minutes for spherical BC/TiO2 nanocomposites both, in situ and ex situ, respectively. Therefore, these results demonstrated that BC/TiO2 to be a low cost material with high capacity of contaminants removing and a great potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. K. Dalrymple, D. H. Yeh, and M. A. Trotz, J. Chem. Technol. Biotechnol., 82, 121 (2007).

    Article  CAS  Google Scholar 

  2. M. Klavarioti, D. Mantzavinos, and D. Kassinos, Environ. Int., 35, 402 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. M. L. Richardson and J. M. Bowron, J. Pharm. Pharmacol., 37, 1 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. M. N. Abellán, B. Bayarri, J. Giménez, and J. Costa, Appl. Catal. B Environ., 74, 233 (2007).

    Article  CAS  Google Scholar 

  5. F. Fu and Q. Wang, J. Environ. Manage., 92, 407 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. S. Babel and T. A. Kurniawan, J. Hazard. Mater., 97, 219 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. M. A. Barakat, Arab. J. Chem., 4, 361 (2011).

    Article  CAS  Google Scholar 

  8. M. A. Hashim, S. Mukhopadhyay, J. N. Sahu, and B. Sengupta, J. Environ. Manage., 92, 2355 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. P. C. Vandevivere, R. Bianchi, and W. Verstraete, J. Chem. Technol. Biotechnol., 72, 289 (1998).

    Article  CAS  Google Scholar 

  10. R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, Catal. Today, 53, 51 (1999).

    Article  CAS  Google Scholar 

  11. N. Bolong, A. F. Ismail, M. R. Salim, and T. Matsuura, Desalination, 239, 229 (2009).

    Article  CAS  Google Scholar 

  12. J. Herrmann, Catal. Today, 53, 115 (1999).

    Article  CAS  Google Scholar 

  13. P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, Food Technol. Biotechnol., 47, 107 (2009).

    CAS  Google Scholar 

  14. R. Brandes, C. Carminatti, A. Mikowski, H. Al-Qureshi, and D. Recouvreux, J. Nano Res., 45, 142 (2017).

    Article  Google Scholar 

  15. Y. Yamada, P. Yukphan, H. T. L. Vu, Y. Muramatsu, D. Ochaikul, S. Tanasupawat, and Y. Nakagawa, J. Gen. Appl. Microbiol., 58, 397 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. W. Czaja, D. Romanovicz, and R. M. Brown, Cellulose, 11, 403 (2004).

    Article  CAS  Google Scholar 

  17. W. A. Daoud, J. H. Xin, and Y. Zhang, Surf. Sci., 599, 69 (2005).

    Article  CAS  Google Scholar 

  18. J. Zeng, S. Liu, J. Cai, and L. Zhang, J. Phys. Chem. C., 114, 7806 (2010).

    Article  CAS  Google Scholar 

  19. C. Yang, C. Gao, Y. Wan, T. Tang, S. Zhang, and K. Dai, J. Porous Mater., 18, 545 (2011).

    Article  CAS  Google Scholar 

  20. O. L. Galkina, A. Sycheva, A. Blagodatskiy, G. Kaptay, V. L. Katanaev, G. A. Seisenabeva, V. G. Kessler, and A. V. Agafonov, Surf. Coat. Technol., 253, 171 (2014).

    Article  CAS  Google Scholar 

  21. R. Brandes, L. Souza, V. Vargas, E. Oliveira, A. Mikowski, C. Carminatti, H. Al-qureshi, and D. Recouvreux, J. Nano Res., 43, 73 (2016).

    Article  CAS  Google Scholar 

  22. Y. Li, L. Cao, L. Li, and C. Yang, J. Hazard. Mater., 289, 140 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. H. F. Moafi, A. F. Shojaie, and M. A. Zanjanchi, Chem. Eng. J., 166, 413 (2011).

    Article  CAS  Google Scholar 

  24. R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, and Z. Li, Adv. Mater. Sci. Eng., 2014, 1 (2014).

    Article  CAS  Google Scholar 

  25. S. M. Nomanbhay and K. Palanisamy, J. Biotechnol., 8, 43 (2005).

    CAS  Google Scholar 

  26. M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. Javad, Chem. Eng. J., 220, 237 (2013).

    Article  CAS  Google Scholar 

  27. I. Lakhdhar, D. Belosinschi, P. Mangin, and B. Chabot, J. Environ. Chem. Eng., 4, 3159 (2016).

    Article  CAS  Google Scholar 

  28. X. Jia, M. Tian, Y. Liu, X. Wu, and H. Song, Appl. Phys. A, 119, 1179 (2015).

    Article  CAS  Google Scholar 

  29. D. Sun, J. Yang, and X. Wang, Nanoscale, 2, 287 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. D. Klemm, B. Heublein, H. Fink, and A. Bohn, Angew. Chem. Int. Ed., 44, 3358 (2005).

    Article  CAS  Google Scholar 

  31. R. Libanori, D. Carnelli, N. Rothfuchs, M. R. Binelli, M. Zanini, L. Nicoleau, B. Feichtenschlager, G. Albrecht, and A. R. Studart, Bioinspir. Biomim., 11, 036004 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. C. A. Otter, P. J. Patty, M. A. K. Williams, M. R. Waterland, and S. G. Telfer, Nanoscale, 3, 941 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohydr. Res., 340, 417 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. F. Xu, J. Yu, T. Tesso, F. Dowell, and D. Wang, Appl. Energy, 104, 801 (2013).

    Article  CAS  Google Scholar 

  35. C. Zhong, G. Zhang, M. Liu, X. Zheng, P. Han, and S. Jia, Appl. Microbiol. Biotechnol., 97, 6189 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. R. L. Oliveira, J. G. Vieira, H. S. Barud, R. M. N. Assunção, G. R. Filho, S. J. L. Ribeiro, and Y. Messadeqq, J. Braz. Chem. Soc., 26, 1861 (2015).

    CAS  Google Scholar 

  37. A. W. Morawski, E. Kusiak-Nejman, J. Przepiórski, R. Kordala, and J. Pernak, Cellulose, 20, 1293 (2013).

    Article  CAS  Google Scholar 

  38. A. Dabrowski, Adv. Colloid. Interface Sci., 93, 135 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, J. Catal., 203, 82 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Brandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandes, R., Trindade, E.C.A., Vanin, D.F. et al. Spherical Bacterial Cellulose/TiO2 Nanocomposite with Potential Application in Contaminants Removal from Wastewater by Photocatalysis. Fibers Polym 19, 1861–1868 (2018). https://doi.org/10.1007/s12221-018-7798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7798-7

Keywords

Navigation