Skip to main content
Log in

Effect of purification method on the electrical properties of the carbon nanotube fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We purified as-received CNT fibers (CNTFs) with four different methods and systematically examined effects of various purifications on the morphology, structure, and electrical conductivity of the resultant CNTFs, respectively. The purified CNTFs were characterized by an optical microscope, transmission electron microscope (TEM) coupled with an energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and multiple source meters. Optical images showed that morphology of CNTFs did not largely change after purification. TEM images and EDS results showed that the Fe impurities, 21.9 wt%, in CNTFs were decreased to 0.17-1.20 wt% and were nearly eliminated by acid and alkali purifications, respectively. Raman results identified the ID/IG ratio of CNTFs was 0.71, while those of HCl treatment after steam with heat (HSCNTFs-HCl), NaOCl treatment after steam with heat (HSCNTFs-NaOCl), and NaOH treatment with heat without steam (NaOH-HCNTFs) were 0.45, 0.49, and 0.57, respectively, which means that purification methods of CNTFs performed in this study are thought to be satisfactory for manufacturing high-purity CNTFs. Electrical conductivity (1.4×104 S/m) of NaOH-HCNTFs (one-step procedure) was twice as high as that (7.3×103 S/m) of CNTFs, but lower than those (2.1-2.3×104 S/m) of HSCNTFs-HCl and HSCNTFs-NaOCl (two-step processes), which demonstrates that two-step processes rather than one-step procedure would have a positive effect on the electrical conductivity of the resultant CNTFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Montoro and J. M. Rosolen, Carbon, 44, 3293 (2006).

    Article  CAS  Google Scholar 

  2. Q. M. Gong, Z. Li, Y. Wang, B. Wu, Z. Zhang, and J. Liang, Mater. Res. Bull., 42, 474 (2007).

    Article  CAS  Google Scholar 

  3. I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, J. Phys. Chem., 105, 1157 (2001).

    Article  CAS  Google Scholar 

  4. H. T. Fang, C. G. Li, C. Liu, F. Li, M. Liu, and H. M. Cheng, Chem. Mater., 16, 5744 (2004).

    Article  CAS  Google Scholar 

  5. V. Pifferi, G. Cappelletti, C. D. Bari, D. Meroni, F. Spadavecchia, and L. Falciola, Electrochim. Acta, 146, 403 (2014).

    Article  CAS  Google Scholar 

  6. G. Tobias, L. Shao, C. G. Salzmann, Y. Huh, and M. L. H. Green, J. Phys. Chem. B., 110, 22318 (2006).

    Article  CAS  Google Scholar 

  7. G. Mercier, C. Herold, J. F. Mareche, S. Cahen, J. Gleize, J. Ghanbaja, G. Lamura, C. Bellouard, and B. Vigolo, New. J. Chem., 37, 790 (2013).

    Article  CAS  Google Scholar 

  8. P. X. Hou, C. Liu, and H. M. Cheng, Carbon, 46, 2003 (2008).

    Article  CAS  Google Scholar 

  9. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. W. Joo, Nanoscale Research Letters, 9, 393 (2014).

    Article  Google Scholar 

  10. A. Suri and K. S. Coleman, Carbon, 49, 3031 (2011).

    Article  CAS  Google Scholar 

  11. I. Pełech, R. Pełech, U. Narkiewicz, D. Moszyński, A. Jędrzejewska, and B. Witkowski, J. Nanomater., 2013, 163 (2013).

    Google Scholar 

  12. A. R. Harutyunyan, B. K. Pradhan, J. Chang, G. Chen, and P. C. Eklund, J. Phys. Chem. B, 106, 8671 (2002).

    Article  CAS  Google Scholar 

  13. J. Y. Song, S. R. Yoon, S. Y. Kim, D. H. Cho, and Y. J. Jeong, Chem. Eng. Sci., 104, 25 (2013).

    Article  CAS  Google Scholar 

  14. S. G. King, L. M. Cafferty, V. Stolojan, and S. R. P. Silva, Carbon, 84, 130 (2015).

    Article  CAS  Google Scholar 

  15. B. Ballesteros, G. Tobias, L. Shao, E. Pellicer, J. Nogues, E. Mendoza, and M. L. H. Green, Small, 4, 1501 (2008).

    Article  CAS  Google Scholar 

  16. L. Cabana, X. Ke, D. Kepic, J. O. Sole, E. T. Rossell, G. V. Tendeloo, and G. Tobias, Carbon, 93, 1059 (2015).

    Article  CAS  Google Scholar 

  17. F. Su, C. Lu, and S. Hu, Colloid. Surface A., 353, 83 (2010).

    Article  CAS  Google Scholar 

  18. C. Lu and H. Chiu, Chem. Eng. Sci., 61, 1138 (2006).

    Article  CAS  Google Scholar 

  19. C. Lu, F. Su, and S. Hu, Appl. Surf. Sci., 254, 7035 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hyun Baik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, C.S., Lee, I.J., Seo, M.S. et al. Effect of purification method on the electrical properties of the carbon nanotube fibers. Fibers Polym 18, 1580–1585 (2017). https://doi.org/10.1007/s12221-017-7401-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7401-7

Keywords

Navigation