Skip to main content
Log in

Morphological and Electrical Properties of Multi-Walled Carbon Nanotube-based Fiber Using General Wet-spinning and Alkaline Post-treatment Methods

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, we report the structural features and electrical properties of a multi-walled carbon nanotube (MWCNT)-based fibers, composed entirely of MWCNTs or a large fraction of MWCNTs, using traditional fiber-manufacturing techniques inspired from classical methods applied in the creation of polyester or nylon microfibers. To obtain the MWCNT-based fibers used in this study, as-spun fibers designed to achieve 20 wt% poly(ethylene glycol)-functionalized MWCNTs and 80 wt% alkali-soluble elastomeric copolyester were prepared using a conventional wet-spinning process, and the copolyester was then sequentially removed from the as-spun fiber through an alkaline post-treatment process. As a result, we obtained a final unique MWCNT-based fiber with a MWCNT content of close to 80 wt%. The results of a morphological characterization show clearly that the surface of the fiber is mostly composed of MWCNTs with a compact structure. In addition, the MWCNT-based fiber exhibited an improved electrical conductivity of 1.9×102 S/cm, which is similar to the results of the pure or neat MWCNT-based fibers that we previously investigated. Overall, it was confirmed that the traditional approach for MWCNT-based fibers on this study have a significant potential for producing MWCNT-based fibers close to pure or neat MWCNT fibers even when using general fiber-manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. M. Zhang, K. R. Atkinson, and R. H. Baughman, Science, 306, 1358 (2004).

    Article  CAS  Google Scholar 

  3. X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, Q. L. Zhang, and S. Fan, Adv. Mater., 18, 1505 (2006).

    Article  CAS  Google Scholar 

  4. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailer, C. Journet, P. Bernier, and P. Poulin, Science, 290, 1331 (2000).

    Article  CAS  Google Scholar 

  5. B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, Appl. Phys. Lett., 81, 1210 (2002).

    Article  CAS  Google Scholar 

  6. P. Miaudet, S. Badaire, M. Maugey, A. Derré, V. Pichot, P. Launois, P. Poulin, and C. Zakri, Nano Lett., 5, 2212 (2005).

    Article  CAS  Google Scholar 

  7. A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, Nature, 423, 703 (2003).

    Article  CAS  Google Scholar 

  8. M. E. Kozlov, R. C. Capps, W. M. Sampson, V. H. Ebron, J. P. Ferraris, and R. H. Baughman, Adv. Mater., 17, 614 (2005).

    Article  CAS  Google Scholar 

  9. L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, Science, 305, 1447 (2004).

    Article  CAS  Google Scholar 

  10. Y. L. Li, I. A. Kinloch, and A. H. Windle, Science, 304, 276 (2004).

    Article  CAS  Google Scholar 

  11. N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. K. Ma, E. A. Bengio, R. F. Waarbeek, J. J. Jong, R. E. Hoogerwerf, S. B. Fairchild, J. B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, and M. Pasquali, Science, 339, 182 (2013).

    Article  CAS  Google Scholar 

  12. D. E. Tsentalovich, R. J. Headrick, F. Mirri, J. Hao, N. Behabtu, C. C. Young, and M. Pasquali, ACS Appl. Mater. Inter., 9, 36189 (2017).

    Article  CAS  Google Scholar 

  13. Y. O. Im, S. H. Lee, T. Kim, J. Park, J. Lee, and K. H. Lee, Appl. Surf. Sci., 392, 342 (2017).

    Article  CAS  Google Scholar 

  14. N. Behabtu, M. J. Green, and M. Pasquali, Nanotoday, 3, 24 (2008).

    Article  CAS  Google Scholar 

  15. Y. Liu and S. Kumar, Polym. Rev., 52, 234 (2012).

    Article  CAS  Google Scholar 

  16. J. Lee, D. M. Lee, Y. K. Kim, H. S. Jeong, and S. M. Kim, Small, 13, 1701131 (2017).

    Article  Google Scholar 

  17. H. J. Cho, H. M. Lee, E. H. Oh, S.-H. Lee, J. B. Park, H. J. Park, S.-B. Yoon, C.-H. Lee, G.-H. Kwak, W. J. Lee, J. H. Kim, J. E. Kim, and K.-H. Lee, Carbon, 136, 409 (2018).

    Article  CAS  Google Scholar 

  18. S. Boncel, R. M. Sundaram, A. H. Windle, and K. K. K. Koziol, ACS Nano, 5, 9339 (2011).

    Article  CAS  Google Scholar 

  19. Y. Jung, T. Kim, and C. R. Park, Carbon, 88, 60 (2015).

    Article  CAS  Google Scholar 

  20. B. Alemán, V. Reguero, B. Mas, and J. J. Vilatela, ACS Nano, 9, 7392 (2015).

    Article  Google Scholar 

  21. H. G. Chae and S. Kumar, Science, 319, 908 (2008).

    Article  CAS  Google Scholar 

  22. M. H. Jee, S. H. Park, J. U. Choi, Y. G. Jeong, and D. H. Baik, Fiber. Polym., 13, 443 (2012).

    Article  CAS  Google Scholar 

  23. M. H. Jee, J. U. Choi, S. H. Park, Y. G. Jeong, and D. H. Baik, Macromol. Res., 20, 650 (2012).

    Article  CAS  Google Scholar 

  24. M. H. Jee and D. H. Baik, Fiber. Polym., 19, 561 (2018).

    Article  CAS  Google Scholar 

  25. M. H. Jee and D. H. Baik, Fiber. Polym., 20, 1608 (2019).

    Article  CAS  Google Scholar 

  26. N. D. Goo, M. H. Jee, Y. J. Kim, and D. H. Baik, “Prepuration and Properties of Carbon Nanotube Fibers”, Proc. Annual Spring Meeting, The Korean Fiber Society, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Ho Jee or Doo Hyun Baik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jee, M.H., Baik, D.H. Morphological and Electrical Properties of Multi-Walled Carbon Nanotube-based Fiber Using General Wet-spinning and Alkaline Post-treatment Methods. Fibers Polym 21, 2456–2461 (2020). https://doi.org/10.1007/s12221-020-0942-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-0942-1

Keywords

Navigation