Skip to main content
Log in

Preparation and characterization of poly(2-hydroxyethyl methacrylate) grafted bacterial cellulose using atom transfer radical polymerization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The purpose of this study is to synthesize grafted Bacterial Cellulose (BC) nanofibers using Atom Transfer Radical Polymerization (ATRP) reinforced into poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel matrix. Nanofibers grafting polymerizations were conducted in the presence of the catalyst CuCl/CuBr and the initiator 2-bromoisobutyrylbromide (2-BiBr). Degrees of substitution (DS) of BC-macroinitiators were quantified using both elemental analysis and gravimetric method. FTIR results confirmed BC nanofibers’ surface modifications of both initiator and hydroxyethyl methacrylate (HEMA) grafts. X-ray spectroscopy further confirmed the increase in carbonyl content after PHEMA-grafting polymerization. Results of the gravimetric analysis showed an increase in the weight of the grafted BC upon increasing reaction time. Furthermore, the change in the swelling ratio percentages of the reinforced composites product (BC-MI-3-g-PHEMA-1.5) was considerably higher based on reaction time. Slight increase in the swelling ratio of BC-MI-3 nanofibers was observed after 48 hours to reach 31 %. Moreover, results of thermal gravimetric analysis (TGA) demonstrated that decomposition temperature at 50 % weight loss (T50) decreased to 350 °C for BC-MI-3-g-PHEMA-1.5. These characteristics demonstrate potentials for applications in the biomedical fields including drug delivery and wound care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yang and S. P. Armes, Macro. Rapid. Comm., 35, 242 (2014).

    Article  CAS  Google Scholar 

  2. E. Malmstrom and A. Carlmark, Polym. Chem., 3, 1702 (2012).

    Article  Google Scholar 

  3. G. P. R. Figueiredo, A. R. P. Figueiredo, A. Alonso-Varona, S. C. M. Fernandes, T. Palomares, E. Rubio-Azpeitia, A. Barros-Timmons, A. J. D. Silvestre, C. P. Neto, and C. S. R. Freire, BioMed. Res. I., http://dx.doi.org/10.1155/2013/ 698141 (2013).

  4. K. L. Robinson, M. A. Khan, M. V. D. Banez, X. Wang, and S. P. Armes, Macromole, 34, 3155 (2001).

    Article  CAS  Google Scholar 

  5. B. Reining, H. Keul, and H. Höcker, J. Polymer, 43, 3139 (2002).

    Article  CAS  Google Scholar 

  6. D. Roy, J. T. Guthrie, and P. Sébastien, Macromole, 38, 10363 (2005).

  7. W. Al-Abdallah and Y. Dahman, Biopro. Biosyst. Eng., 36, 1735 (2013).

    Article  CAS  Google Scholar 

  8. Y. Dahman in “Encyclopedia of Nanoscience and Nanotechnology”, 6th ed., pp.459–479, American Scientific Publisher, California, 2009.

    Google Scholar 

  9. Y. Dahman, K. E. Jayasuriya, and M. Kalis, Appl. Biochem. Biotech., 162, 1647 (2012).

    Article  Google Scholar 

  10. J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995).

    Article  CAS  Google Scholar 

  11. M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura, Macromole, 28, 1721 (1995).

    Article  CAS  Google Scholar 

  12. B. Boutevin, J. Polym. Sci., 38, 3235 (2000).

    Article  CAS  Google Scholar 

  13. P. Krol and P. Chmielarz, eXPRESS Polym. Lett., 7, 249 (2013).

    Article  CAS  Google Scholar 

  14. T. Ameringer, F. Ercole, K. M. Tsang, B. R. Coad, X. Hou, A. Rodda, D. R. Nisbet, H. Thissen, R. A. Evans, L. Meagher, and J. S. Forsythe, Bio-interphases, 8, 16 (2013).

    Google Scholar 

  15. T. E. Patten, J. Xia, T. Abernathy, and K. Matyjaszewsk, Science, 272, 866 (1996).

    Article  CAS  Google Scholar 

  16. Y. Dahman and T. Oktem, J. Appl. Polym. Sci., 126, 188 (2011).

    Article  Google Scholar 

  17. R. Alosmanov, K. Wolski, and S. Zapotoczny, Cellulose, 24, 258 (2017).

    Article  Google Scholar 

  18. W. Huang, J. B. Kim, M. L. Bruening, and G. L. Baker, Macromole, 35, 1175 (2002).

    Article  CAS  Google Scholar 

  19. A. Carlmark and E. Malmstrom, Biomacromole, 4, 1740 (2003).

    Article  CAS  Google Scholar 

  20. L. Bach, Q. Bui, X. Cao, V. Ho, and K. Lim, Polym. Bull., 73, 2627 (2016).

    Article  CAS  Google Scholar 

  21. X. Shen, J. L. Shamshina, P. Berton, G. Gurau, and R. D. Rogers, Green Chem., 18, 53 (2016).

    Article  Google Scholar 

  22. Z. Wang, C. Crandall, V. L. Prautzsch, R. Sahadevan, T. J. Menkhaus, and H. Fong, ACS Appl. Mat. Inter., doi: 10.1021/acsami.6b16116 (2017).

    Google Scholar 

  23. R. Endo, K. Yamamoto, and J.-I. Kadokawa, J. Fibers, 3, 338 (2015).

    Article  Google Scholar 

  24. N. J.-I. Kadokawa, Coatings, 6, 27 (2016).

    Article  Google Scholar 

  25. F. A. D. Santos, C. V. Gisele Iulianelli, and M. I. B. Tavares, Mater. Sci. Appl., 7, 257 (2016).

    Google Scholar 

  26. C. Verlhac and J. Dedier, J. Polym. Sci.: Part A: Polym. Chem., 28, 1171 (1990).

    Article  CAS  Google Scholar 

  27. S. Corneillie and M. Smet, Polym. Chem., 6, 850 (2015).

    Article  CAS  Google Scholar 

  28. D. Shen and Y. Huang, Polymer, 45, 7091 (2004).

    Article  CAS  Google Scholar 

  29. Aldrich Library of FTIR Spectra Aldrich Chemical Co., Chem. Lib. Ref., 66, pp.743-744, 1989.

  30. L. Gang, Y. Haipeng, and L. Yixing, Adv. Mater. Res., 221, 90 (2011).

    Article  Google Scholar 

  31. M. Pulat and F. Nuralin, Cell Chem. Technol., 48, 137 (2014).

    CAS  Google Scholar 

  32. S. K. Fierens, D. R. D’hooge, H. M. Van Steenberge, M.-F. Reyniers, and G. B. Marin, Polymer, 7, 655 (2015).

    Article  CAS  Google Scholar 

  33. S. Kalial, A. Kumar, and B. S. Kaith, Adv. Mater. Lett., 4, 742 (2013).

    Article  Google Scholar 

  34. M. H. Casimiro, J. P. Leal, and M. H. Gil, Nucl. Instr. Meth. Phys. Res. B, 236, 482 (2005).

    Article  CAS  Google Scholar 

  35. M. Szuwarzynski, K. Wolski, and S. Zapotoczny, Polym. Chem., 7, 5664 (2016).

    Article  CAS  Google Scholar 

  36. C. Boyer, N. A. Corrigan, K. Jung, D. Nguyen, T.-K. Nguyen, N.-N. M. Adnan, S. Oliver, S. Shanmugam, and J. Yeow, Chem. Rev., 116, 1803 (2016).

    Article  CAS  Google Scholar 

  37. A. A. Singh and S. Palsule, Compos. Interface, 20, 553 (2013).

    Article  CAS  Google Scholar 

  38. S. S. Paula, A. Lacerda, M. M. V. Barros-Timmons, S. R. Carmen, J. D. Armando, and C. P. Neto, Biomacromole, 14, 2063 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Dahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volynets, B., Nakhoda, H., Ghalia, M.A. et al. Preparation and characterization of poly(2-hydroxyethyl methacrylate) grafted bacterial cellulose using atom transfer radical polymerization. Fibers Polym 18, 859–867 (2017). https://doi.org/10.1007/s12221-017-1096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1096-7

Keywords

Navigation