Skip to main content

Advertisement

Log in

Potential of Biocellulose Nanofibers Production from Agricultural Renewable Resources: Preliminary Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present preliminary study, we report results for the biocellulose nanofibres production by Gluconacetobacter xylinus. Production was examined by utilizing different feedstocks of single sugars and sugar mixtures with compositions similar to the acid hydrolyzates of different agriculture residues. Profiles for cell proliferation, sugar consumption, and the subsequent pH changes were thoroughly analyzed. Highest biocellulose production of 5.65 g/L was achieved in fructose medium with total sugar consumption of 95.57%. Moreover, the highest production using sugar mixtures was 5.2 g/L, which was achieved in feedstock with composition identical to the acid hydrolyzate of wheat straws. This represented the highest biocellulose yield of 17.72 g/g sugars compared with 14.77 g/g fructose. The lowest production of 1.1 and 1.75 g/L were obtained in xylose and glucose media, respectively, while sucrose and arabinose media achieved relatively higher production of 4.7 and 4.1 g/L, respectively. Deviation in pH of the fermentation broths from the optimum value of 4–5 generally had marked effect on biocellulose production with single sugars in feedstock. However, the final pH values recorded in the different sugar mixtures were ∼3.3–3.4, which had lower effect on production hindrance. Analyzing profiles for sugars' concentrations and cell growth showed that large amount of the metabolized sugars were mainly utilized for bacterial cell growth and maintenance, rather than biocellulose production. This was clearly observed with single sugars of low production, while sugar consumption was rather utilized for biocellulose production with sugar mixtures. Results reported in this study demonstrate that agriculture residues might be used as potential feedstocks for the biocellulose nanofibres production. Not only this represents a renewable source of feedstock, but also might lead to major improvements in production if proper supplements and control were utilized in the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshinaga, F. T., & Watanabe, K. (1997). Bioscience, Biotechnology, and Biochemistry, 61, 219–224.

    Article  CAS  Google Scholar 

  2. Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Cellulose, 5, 187–200.

    Article  CAS  Google Scholar 

  3. Fontanam, J., de Souza, A., Fontana, C., Torriani, I., Moreschi, J., Gallotti, B., et al. (1990). Journal of Applied Biochemistry and Biotechnology, 25, 253–264.

    Article  Google Scholar 

  4. Römling, U. (2002). Microbiological Research, 153, 205–212.

    Google Scholar 

  5. Rose, P., Mayer, R., & Benziman, M. (1991). Microbiological Reviews, 55, 35–58.

    Google Scholar 

  6. Tahara, N., Yano, H., & Yoshinaga, F. (1997). Journal of Fermentation and Bioengineering, 83, 389–392.

    Article  CAS  Google Scholar 

  7. Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. (1998). Journal of Fermentation and Bioengineering, 85, 598–603.

    Article  CAS  Google Scholar 

  8. Dahman, Y. (2009). Journal of Nanoscience and Nanotechnology, 9(9), 5105–5122.

    Article  CAS  Google Scholar 

  9. Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K., Yamada, Y., & Yoshinaga, F. (1995). Journal of General and Applied Microbiology, 41, 307–314.

    Article  CAS  Google Scholar 

  10. Sani, A., & Dahman, Y. (2009). Journal of Chemical Technology and Biotechnology, 85(2), 151–164.

    Google Scholar 

  11. Bae, S. O., Sugano, Y., & Shoda, M. (2004). Journal of Bioscience and Bioengineering, 97, 33–38.

    CAS  Google Scholar 

  12. Chao, Y. P., Sugano, Y., Kouda, T., Yoshinaga, F., & Shoda, M. (1997). Biotechnology Techniques, 11, 829–832.

    Article  CAS  Google Scholar 

  13. Chao, Y., Ishida, T., Sugano, Y., & Shoda, M. (2000). Biotechnology and Bioengineering, 68, 345–352.

    Article  CAS  Google Scholar 

  14. Ishihara, M., Matsunaga, M., Hayashi, N., & Tišler, V. (2002). Enzyme and Microbial Technology, 31, 986–991.

    Article  CAS  Google Scholar 

  15. Hestrin, S., & Schramm, M. (1954). Biochemical Journal, 58, 345–352.

    CAS  Google Scholar 

  16. Czaja, W., Romanowicz, D., & Brown, R. M. (2004). Cellulose, 11, 403–411.

    Article  CAS  Google Scholar 

  17. Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G., & Lee, S. J. (2003). Bioresource Technology, 86, 215–219.

    Article  Google Scholar 

  18. Bae, S. O., & Shoda, M. (2005). Journal of Microbiology and Biotechnology, 67, 45–51.

    Article  CAS  Google Scholar 

  19. Qureshi, N., Saha, B. C., Hector, R. E., Huges, S. R., & Cotta, M. A. (2008). Journal of Biomass and Bioenergy, 32, 168–175.

    Article  CAS  Google Scholar 

  20. Grohmann, K., & Bothast, R. J. (1997). Process Biochemistry, 32, 405–415.

    Article  CAS  Google Scholar 

  21. Ezeji, T., & Blaschek, H. P. (2008). Bioresource Technology, 99, 5232–5242.

    Article  CAS  Google Scholar 

  22. Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., & Yoshinaga, F. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 575–579.

    Article  CAS  Google Scholar 

  23. Keshk, S., & Sameshima, K. (2006). Enzyme and Microbial Technology, 40, 4–8.

    Article  CAS  Google Scholar 

  24. Verschuren, P. G., Cardona, T. D., Robert Nout, M. J., De Gooijer, K. D., & Van Den Heuvel, J. C. (2000). Journal of Bioscience and Bioengineering, 89, 414–419.

    Article  CAS  Google Scholar 

  25. Nakai, T., Tonouchi, N., Konishi, T., Kojima, Y., Tsuchida, T., & Yoshinaga, F. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 14–18.

    Article  CAS  Google Scholar 

  26. Weinhouse, H., & Benziman, M. (1974). Biochemical Journal, 138, 537–542.

    CAS  Google Scholar 

  27. Masaoka, S., Ohe, T., & Sakota, N. (1993). Journal of Fermentation and Bioengineering, 75, 18–22.

    Article  CAS  Google Scholar 

  28. Embuscado, M. E., Marks, J. S., & BeMiller, J. N. (1994). Food Hydrocolloids, 8, 407–418.

    Article  CAS  Google Scholar 

  29. Asai, T. (1968). Acetic acid bacteria: classification and biochemical activities. Tokyo: University of Tokyo Press.

    Google Scholar 

  30. Yang, Y. K., Park, S. H., Hwang, J. W., Pyun, Y. R., & Kim, Y. S. (1998). Journal of Fermentation and Bioengineering, 85, 312–317.

    Article  CAS  Google Scholar 

  31. Velasco-Bedran, H., & Lopez-Isunza, F. (2007). Process Biochemistry, 42, 1180–1190.

    Article  CAS  Google Scholar 

  32. Du Toit, W. J., Pretorius, I. S. (2002). Annales de Microbiologie, 52, 155–179.

    Google Scholar 

  33. Tahara, N., Tonouchi, N., Yano, H., & Yoshinaga, F. (1998). Journal of Fermentation and Bioengineering, 85, 589–594.

    Article  CAS  Google Scholar 

  34. Tahara, N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y., & Yoshinaga, F. (1997). Bioscience, Biotechnology, and Biochemistry, 61, 1862–1865.

    Article  CAS  Google Scholar 

  35. Park, J. K., Jung, J. Y., & Park, Y. H. (2003). Biotechnological Letters, 25, 2055–2059.

    Article  CAS  Google Scholar 

  36. Suto, M., & Tomita, F. (2001). Journal of Bioscience and Bioengineering, 92(4), 305–311.

    Article  CAS  Google Scholar 

  37. Forng, E. R., Anderson, S. M., & Cannon, R. E. (1989). Applied and Environmental Microbiology, 55, 1317–1319.

    CAS  Google Scholar 

  38. Canilha, L., Carvalho, W., & Almeida De Silva, J. B. (2005). World Journal of Microbiology and Biotechnology, 21, 1087–1093.

    Article  CAS  Google Scholar 

  39. Sun, R., Lawther, J. M., & Banks, W. B. (1995). Industrial Crops and Products, 4, 121–145.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Agriculture and Agri-Food Canada for the financial support. The contribution of Amir Sani is acknowledged with our appreciation together with the contribution of Casco Inc., London, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Dahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahman, Y., Jayasuriya, K.E. & Kalis, M. Potential of Biocellulose Nanofibers Production from Agricultural Renewable Resources: Preliminary Study. Appl Biochem Biotechnol 162, 1647–1659 (2010). https://doi.org/10.1007/s12010-010-8946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8946-8

Keywords

Navigation