Skip to main content
Log in

Modeling melt blowing fiber with different polymer constitutive equations

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The characteristics of molten polymer plays a major role in fiber formation in the melt blowing (MB) process. In this paper, the Maxwell model and two kinds of the standard linear solid (SLS) models in the bead-viscoelastic element model are proposed for melt blown fiber formation simulation. The fiber diameter, velocity and stress are studied with these different constitutive equations of polymer. The trajectory path of fiber whipping is obtained using numerical simulation and compares with the actual fiber motion which is captured with a high-speed camera. The results present that the Standard Linear Solid Model (SLS) is better than Maxwell model to predict the melt blown fiber’s characteristics under the same air drawing conditions, including fiber diameter, velocity and stress. The whipping motion of the fiber also can be well expressed by SLS constitutive model. The mathematical model with SLS model provides a clear understanding on the mechanism of the formation of microfibers during melt blowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Russell, “Handbook of Nonwovens”, 1st ed., pp.1–5, CRC Press Inc., Boca Raton, FL. Cambridge, 2007.

    Book  Google Scholar 

  2. R. R. Hegde and G. S. Bhat, Appl. Polym. Sci., 115, 1062 (2010).

    Article  CAS  Google Scholar 

  3. Y. Zhang, C. Lim, S. Ramakrishna, and Z. M. Huang, J. Mater. Sci.-Mater. Med., 16, 933 (2005).

    Article  CAS  Google Scholar 

  4. T. T. Wu and R. L. Shambaugh, Ind. Eng. Chem. Res., 31, 379 (1992).

    Article  CAS  Google Scholar 

  5. R. Chhabra and R. L. Shambaugh, Ind. Eng. Chem. Res., 35, 4366 (1996).

    Article  CAS  Google Scholar 

  6. V. Bansal and R. L. Shambaugh, Ind. Eng. Chem. Res., 37, 1799 (1998).

    Article  CAS  Google Scholar 

  7. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 44, 8922 (2005).

    Article  CAS  Google Scholar 

  8. H. M. Kruka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 45, 5098 (2006).

    Article  Google Scholar 

  9. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 46, 655 (2007).

    Article  CAS  Google Scholar 

  10. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 47, 935 (2008).

    Article  CAS  Google Scholar 

  11. M. A. J. Uyttendaele and R. L. Shambaugh, AIChE J., 36, 175 (1990).

    Article  CAS  Google Scholar 

  12. R. S. Rao and R. L. Shambaugh, Ind. Eng. Chem. Res., 32, 3100 (1993).

    Article  CAS  Google Scholar 

  13. V. T. Marla and R. L. Shambaugh, Ind. Eng. Chem. Res., 42, 6993 (2003).

    Article  CAS  Google Scholar 

  14. D. H. Tan, C. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko, and F. S. Bates, J. Non-Newton. Fluid Mech., 165, 892 (2010).

    Article  CAS  Google Scholar 

  15. A. Zachara and Z. Lewandowski, Fibres Text. East. Eur., 16, 17 (2008).

    CAS  Google Scholar 

  16. L. Jarecki and Z. Lewandowski, Fibres Text. East. Eur., 17, 75 (2009).

    CAS  Google Scholar 

  17. W. L. Han and X. H. Wang, Fiber. Polym., 15, 1190 (2014).

    Article  Google Scholar 

  18. W. L. Han and X. H. Wang, Fiber. Polym., 13, 626 (2012).

    Article  Google Scholar 

  19. Y. F. Sun and X. H. Wang, J. Appl. Polym. Sci., 115, 1540 (2010).

    Article  CAS  Google Scholar 

  20. Y. F. Sun, Y. C. Zeng, and X. H. Wang, Ind. Eng. Chem. Res., 50, 1099 (2011).

    Article  CAS  Google Scholar 

  21. S. Xie and Y. C. Zeng, Fiber. Polym., 15, 553 (2014).

    Article  Google Scholar 

  22. S. Xie and Y. C. Zeng, Ind. Eng. Chem. Res., 52, 2116 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Wang, X. Modeling melt blowing fiber with different polymer constitutive equations. Fibers Polym 17, 74–79 (2016). https://doi.org/10.1007/s12221-016-5721-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5721-7

Keywords

Navigation