Skip to main content
Log in

Fabrication and characterization of absorbent and antibacterial alginate fibers loaded with sulfanilamide

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Absorbent alginate fibers were fabricated using wet spinning technique and a broad-spectrum antibacterial and anti-inflammatory agent sulfanilamide was loaded from co-dissolving solution. The drug entrapment in the fibers during the processing was confirmed by optical microscope, SEM and FTIR. The water absorbency, in vitro drug release and antibacterial activities were performed to evaluate the potential application of the sulfanilamide-loaded alginate fibers for wound dressing. The results indicated that sulfanilamide was successfully encapsulated into the alginate fibers, and this system was stable in terms of high loading content and effectiveness in release. The in vitro release experiment showed a sustained and controlled release pattern of the drug from the fibers. And in vitro activity substantiated the fact that sulfanilamide was delivered in its active state and exhibited better antibacterial activities in comparison with the pure alginate fibers. Therefore the present investigation indicated that the sulfanilamide-loaded alginate fibers have potential application as ideal wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Guo and L. A. DiPietro, J. Dent. Res., 86, 219 (2010).

    Article  Google Scholar 

  2. N. Vedrenne, B. Coulomb, A. Danigo, and A. Desmoulière, Pathol. Biol., 60, 20 (2012).

    Article  CAS  Google Scholar 

  3. G. D. Winter, Nature, 193, 293 (1962).

    Article  CAS  Google Scholar 

  4. M. Thirugnanaselvam, N. Gobi, and S. Arun Karthick, Fiber. Polym., 14, 965 (2013).

    Article  CAS  Google Scholar 

  5. Y. Huang and Z. B. Zhong, J. Mater. Chem. B, 2, 3427 (2014).

    Article  CAS  Google Scholar 

  6. S. T. Oh, W. R. Kim, S. H. Kim, Y. C. Chung, and J. S. Park, Fiber. Polym., 12, 159 (2011).

    Article  CAS  Google Scholar 

  7. S. K. Papageorgiou, E. P. Kouvelos, and E. P. Favvas, Carbohydr. Res., 345, 469 (2011).

    Article  Google Scholar 

  8. L. Liu, L. Jiang, G. K. Xu, C. Ma, X. G. Yang, and J. M. Yao, J. Mater. Chem. B, 2, 7596 (2014).

    Article  CAS  Google Scholar 

  9. L. Bervena and R. Solberg, J. Bioact. Compat. Polym., 2, 30 (2013).

    Google Scholar 

  10. K. Y. Lee and D. J. Mooney, Prog. Polym. Sci., 37, 106 (2012).

    Article  CAS  Google Scholar 

  11. W. Ha, X. W. Meng, and Q. Li, Soft Matter, 6, 1405 (2010).

    Article  CAS  Google Scholar 

  12. Y. H. Liang, C. H. Liu, and S. H. Liao, ACS Appl. Mater. Interfaces, 4, 6720 (2012).

    Article  CAS  Google Scholar 

  13. N. Lin, C. Bruzzese, and A. Dufresne, ACS Appl. Mater. Interfaces, 4, 4948 (2012).

    Article  CAS  Google Scholar 

  14. N. Khuathan and T. Pongjanyakul, Int. J. Pharm., 460, 63 (2013).

    Article  Google Scholar 

  15. P. P. Zhang, B. Wang, and G. R. Williams, Mater. Res. Bull., 48, 3058 (2013).

    Article  CAS  Google Scholar 

  16. R. Stone, S. Hipp, and J. Barden, J. Appl. Polym. Sci., 130, 1975 (2013).

    Article  CAS  Google Scholar 

  17. Q. Wang, X. W. Hu, and Y. M. Du, Carbohydr. Polym., 82, 842 (2010).

    Article  CAS  Google Scholar 

  18. R. Khajavi and M. Abbasipour, Adv. Polym. Tech., doi: 10.1002/adv.21408 (2014).

    Google Scholar 

  19. G. K. Xu, L. Liu, and J. M. Yao, Adv. Mater. Res., 796, 87 (2013).

    Article  CAS  Google Scholar 

  20. Y. M. Qin, Tech. Textiles, 4, 32 (2006).

    Google Scholar 

  21. A. R. Fajardo and M. B. Silva, RSC Adv., 2, 11095 (2012).

    Article  CAS  Google Scholar 

  22. H. L. Nie, Z. H. Ma, and Z. X. Fan, Int. J. Pharm., 373, 4 (2009).

    Article  CAS  Google Scholar 

  23. S. Benavides and J. E. Reyes, J. Food Eng., 110, 232 (2012).

    Article  CAS  Google Scholar 

  24. S. H. Jeong, Y. H. Hwang, and S. C. Yi, J. Mater. Sci., 40, 5413 (2005).

    Article  CAS  Google Scholar 

  25. D. Leal, B. Matsuhiro, and M. Rossi, Carbohydr. Res., 343, 308 (2008).

    Article  CAS  Google Scholar 

  26. N. P. Chandia, B. Matsuhiro, and A. E. Vásquez, Carbohydr. Polym., 46, 81 (2001).

    Article  CAS  Google Scholar 

  27. A. Chandran, Y. S. Mary, H. T. Varghese, and C. Y. Panicker, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 79, 1584 (2011).

    Article  CAS  Google Scholar 

  28. D. Kaiser, J. Hafner, D. Mayer, L. E. French, and S. Lauchi, Adv. Skin Wound Care, 26, 67 (2013).

    Article  Google Scholar 

  29. C. F. Tan, Z. H. Sun, Y. L. Hong, Y. Y. Li, X. S. Chen, and X. D. Zhang, J. Mater. Chem. B, 1, 3694 (2013).

    Article  CAS  Google Scholar 

  30. B. B. Crow, A. F. Borneman, D. L. Hawkins, G. M. Smith, and K. D. Nelson, Tissue. Eng., 11, 1077 (2005).

    Article  CAS  Google Scholar 

  31. N. Li, S. N. Tan, J. Cui, N. Guo, W. Wang, Y. G. Zu, S. Jin, X. X. Xu, Q. Liu, and Y. J. Fu, J. Antibiot., 67, 689 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juming Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Liu, L., Hua, W. et al. Fabrication and characterization of absorbent and antibacterial alginate fibers loaded with sulfanilamide. Fibers Polym 16, 1255–1261 (2015). https://doi.org/10.1007/s12221-015-1255-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1255-7

Keywords

Navigation