Skip to main content
Log in

Fabrication of PEO/chitosan/PCL/olive oil nanofibrous scaffolds for wound dressing applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Biodegradable polyethylene oxide (PEO)/chitosan (CS)/poly(ε-caprolactone) (PCL)/olive oil composite nanofibers were fabricated by electrospinning process. The prepared nanofibers were characterized using SEM and FTIR analysis. A response surface methodology based on Box-Behnken design (BBD) was used to predict the average diameter of electrospun nanofibers based on electrospinning parameters including voltage, flow rate and tip-collector distance. The optimum experimental average diameter of electrospun nanofibers was found to be 86 nm which was in good agreement with the predicted value by the BBD analysis (88 nm). In vitro release of olive oil incorporated PEO/CS/PCL/olive oil nanofibers demonstrated a rapid release of olive oil during the first 3 h which enhanced gradually afterwards. Good attachment, spreading, cell proliferation, as well as nontoxic behavior of PEO/CS/PCL/olive oil nanofibrous scaffolds on HDF fibroblast cells were proved by cytotoxicity studies. Furthermore, the high antibacterial activity of PEO/CS/PCL/olive oil composite nanofibers against Gram-negative bacteria E. coli and Gram-positive S. aureus was observed. This study suggests that the prepared PEO/CS/PCL/olive oil composite nanofibrous scaffolds could be used as an ideal patch for wound dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Chronakis, J. Mater. Proc. Technol., 167, 283 (2005).

    Article  CAS  Google Scholar 

  2. A. J. Meinel, O. Germershaus, T. Luhmann, H. P. Merkle, and L. Meinel, Eur. J. Pharm. Biopharm., 81, 1 (2012).

    Article  CAS  Google Scholar 

  3. P. Nakielski, T. Kowalczyk, K. Zembrzycki, and T. A. Kowalewski, J. Biomed. Res. Part B, 103, 282 (2015).

    Article  Google Scholar 

  4. J. S. Im, J. Yun, Y. M. Lim, H. I. Kim, and Y. S. Lee, Acta Biomater., 6, 102 (2010).

    Article  CAS  Google Scholar 

  5. B. Song, C. Wu, and J. Chang, J. Biomed. Res. Part B, 100, 2178 (2012).

    Article  Google Scholar 

  6. Y. N. Lin, K. M. Chang, S. Jeng, P. Y. Lin, and R. Q. Hsu, J. Mater. Sci.-Mater. Med., 22, 571 (2010).

    Article  Google Scholar 

  7. J. Venugopal, S. Low, A. T. Choon, and S. Ramakrishna, J. Biomed. Res. Part B, 84, 34 (2010).

    Google Scholar 

  8. P. C. Caracciolo, V. Thomas, Y. K. Vohra, F. Buffa, and G. A. Abraham, J. Mater. Sci.-Mater. Med., 20, 2129 (2009).

    Article  CAS  Google Scholar 

  9. C. Xu, C. Lei, L. Meng, C. Wang, and Y. Song, J. Biomed. Res. Part B, 100, 1435 (2012).

    Article  Google Scholar 

  10. H. Zhou, A. H. Touny, and S. B. Bhaduri, J. Mater. Sci. Mater. Med., 22, 1183 (2011).

    Article  CAS  Google Scholar 

  11. V. Leung, R. Hartwell, S. S. Elizei, H. Yang, A. Ghahary, and F. Ko, J. Biomed. Res. Part B, 102, 508 (2014).

    Article  Google Scholar 

  12. K. T. Shalumon, K. H. Anulekha, V. Sreeja, S. V. Nair, K. P. Nair, and R. J. Chennazhi, Int. J. Biol. Macromol., 49, 247 (2011).

    Article  CAS  Google Scholar 

  13. D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin, J. Biomed. Res. Part B, 70, 286 (2004).

    Article  Google Scholar 

  14. S. Y. Gu, Z. M. Wang, J. Ren, and C. Y. Zhang, Mater. Sci. Eng. C, 29, 1822 (2009).

    Article  CAS  Google Scholar 

  15. T. J. Sill and H. A. Recum, Biomaterials, 29, 1989 (2008).

    Article  CAS  Google Scholar 

  16. Y. Zhang, C. T. Lim, S. Ramakrishna, and Z. Huang, J. Mater. Sci.-Mater. Med., 16, 933 (2005).

    Article  CAS  Google Scholar 

  17. R. Salehi, M. Irani, M. Eskandani, K. Nowruzi, S. Davaran, I. Haririan, Int. J. Polym. Mater. Polym. Biomat., 63, 609 (2014).

    Article  CAS  Google Scholar 

  18. K. T. Shalumon, N. S. Binulal, N. Selvamurugan, S. V. Nair, M. Deepthy, T. Furuike, H. Tamura, and R. Jayakumar, Carbohydr. Polym. 77, 863 (2009).

    Article  CAS  Google Scholar 

  19. U. S. Sajeev, A. K. Anoop, M. Deepthy, and S. V. Nair, Bull. Mater. Sci., 31, 343 (2008).

    Article  CAS  Google Scholar 

  20. N. S. Binulal, M. Deepthy, N. Selvamurugan, K. T. Shalumon, S. Suja, M. Ullas, R. Jayakumar, and S. V. Nair, Tissue Eng. Part A, 16, 393 (2010).

    Article  CAS  Google Scholar 

  21. Y. T. Jia, J. Gong, X. H. Gu, H. Y. Kim, J. Dong, and X. Y. Shen, Carbohydr. Polym., 67, 403 (2007).

    Article  CAS  Google Scholar 

  22. K. T. Shalumon, K. H. Anulekha, C. M. Girish, S. V. Prasanth, and R. J. Nair, Carbohydr. Polym., 80, 413 (2010).

    Article  CAS  Google Scholar 

  23. Y. S. Zhou, D. Z. Yang, and J. Nie, Chinese Chem. Lett., 18, 118 (2007).

    Article  CAS  Google Scholar 

  24. P. Zahedi, I. Rezaeian, S. O. RanaeiSiadat, S. H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).

    Article  CAS  Google Scholar 

  25. C. K. S. Pillai and C. P. Sharma, Biomater. Artif. Organs, 22, 179 (2009).

    Google Scholar 

  26. X. Y. Li, X. Y. Kong, S. Shi, X. H. Wang, G. Guo, F. Luo, X. Zhao, Y. Q. Wei, and Z. Y. Qian, Carbohydr. Polym., 82, 904 (2010).

    Article  CAS  Google Scholar 

  27. J. Han, T.-X. Chen, C. J. B. White, and L. M. Zhu, Int. J. Pharm., 382, 215 (2009).

    Article  CAS  Google Scholar 

  28. T. Wang, X. K. Zh, X. T. Xue, and D. Y. Wu, Carbohydr. Polym., 88, 75 (2012).

    Article  CAS  Google Scholar 

  29. R. Gurfinkel, M. Palivatkel-Naima, R. Gleisinger, L. Rosenb, and J. Singer, Am. J. Emerg. Med., 30, 79 (2012).

    Article  Google Scholar 

  30. Z. X. Cai, X. M. Mo, K. H. Zhang, L. P. Fan, A. L. Yin, C. L. He, and H. S. Wang, Int. J. Mol. Sci., 11, 3529 (2010).

    Article  CAS  Google Scholar 

  31. S. Pandamooz, A. Hadipour, H. Akhavan-Niaki, M. Pourghasem, Z. Abedian, A. M. Ardekani, M. Golpour, M. H. Zuhair, and A. Mostafazadeh, Biotechnol. Appl. Biochem., 59, 254 (2012).

    Article  CAS  Google Scholar 

  32. T. Mosmann, J. Immunol. Methods, 65, 55 (1983).

    Article  CAS  Google Scholar 

  33. C. Srisitthiratkul, V. Pongsorrarith, and N. Intasanta, Appl. Surf. Sci., 257, 8850 (2011).

    Article  CAS  Google Scholar 

  34. L. D. Tijing, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, C.-H. Park, and C. S. Kim, Mater. Chem. Phys., 134, 557 (2012).

    Article  CAS  Google Scholar 

  35. Y. Park, I. H. Lee, and G. N. Bea, J. Ind. Eng. Chem., 14, 707 (2008).

    Article  CAS  Google Scholar 

  36. S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Polymer, 46, 6128 (2005).

    Article  CAS  Google Scholar 

  37. N. Sultana, M. I. Hassan, and M. M. Lim, “Composite Synthetic Scaffolds for Tissue Engineering and Regenerative Medicine”, pp.13–24, Springer International Publishing, Berlin, 2015.

    Google Scholar 

  38. S. Sarmila, S. Abhishek, N. Rajashree, A. R. Phani, and P. L. Nayak, Carbohydr. Polym., 80, 413 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaeil Haririan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarghami, A., Irani, M., Mostafazadeh, A. et al. Fabrication of PEO/chitosan/PCL/olive oil nanofibrous scaffolds for wound dressing applications. Fibers Polym 16, 1201–1212 (2015). https://doi.org/10.1007/s12221-015-1201-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1201-8

Keywords

Navigation