Skip to main content
Log in

Response surface methodology optimized dyeing of wool with cumin seeds extract improved with plasma treatment

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the aqueous extract of Cuminum Ciminum L. seed was applied on wool as a novel natural colorant. Gas chromatography coupled with mass spectrometry was conducted to identify the composition of the extract. Response surface methodology and D-optimal design were employed to investigate and optimize the effects of three independent factors including mordant concentration, dyeing pH and temperature on the color strength of dyed samples. A statistical model was obtained to correlate between the amounts of three independent factors and color strength of dyed samples as the response. Low pressure plasma treatment using oxygen, argon, and their mixture was employed to improve the dyeability of wool fibers. The effect of different plasma treatments on the surface chemistry and morphology of wool fibers were studied using attenuated total reflectance-Fourier transform infrared spectroscopy and field emission scanning electron microscopy, respectively. The fastness properties of dyed samples were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Khan, N. Iqbal, S. Adeel, M. Azeem, F. Batool, and I. A. Bhatti, Dyes Pigment., 103, 50 (2014).

    Article  CAS  Google Scholar 

  2. E. Koh and K. H. Hong, Dyes Pigment., 103, 222 (2014).

    Article  CAS  Google Scholar 

  3. K. Sinha, P. D. Saha, and S. Datta, Dyes Pigment., 94, 212 (2012).

    Article  CAS  Google Scholar 

  4. A. Etemadifar, H. Dehghanizadeh, N. Nasirizadeh, and M. Rohani-Moghadam, Fiber. Polym., 15, 254 (2014).

    Article  CAS  Google Scholar 

  5. D. Das, D. B. Datta, and P. Bhattacharya, Cloth. Text. Res. J., 32, 93 (2014).

    Article  Google Scholar 

  6. M. Shahid, Shahid-ul-Islam, and F. Mohammad, J. Cleaner Prod., 53, 310 (2013).

    Article  CAS  Google Scholar 

  7. K. Sachan and V. Kapoor, Indian J. Tradit. Knowl., 6, 270 (2007).

    Google Scholar 

  8. S. Ratnapandian, L. Wang, S. M. Fergusson, and M. Naebe, J. Fib. Bioeng. Inf., 4, 267 (2011).

    Article  Google Scholar 

  9. A. Haji, A. Mousavi Shoushtari, and M. Mirafshar, Color. Technol., 130, 37 (2014).

    Article  CAS  Google Scholar 

  10. A. Haji and A. M. Shoushtari, J. Ind. Text., 62, 244 (2011).

    CAS  Google Scholar 

  11. D. Fakin, A. Ojstrsek, and S. C. Benkovic, J. Mater. Process. Technol., 209, 584 (2009).

    Article  CAS  Google Scholar 

  12. N. S. Iacobellis, P. Lo Cantore, F. Capasso, and F. Senatore, J. Agric. Food Chem., 53, 57 (2005).

    Article  CAS  Google Scholar 

  13. P. Hashemi, M. Shamizadeh, A. Badiei, A. Ghiasvand, and K. Azizi, Chromatographia, 70, 1147 (2009).

    Article  CAS  Google Scholar 

  14. R. Ravi, M. Prakash, and K. K. Bhat, Int. J. Food Prop., 16, 1048 (2013).

    Article  CAS  Google Scholar 

  15. P. B. Tayade and R. V. Adivarekar, J. Environ. Chem. Eng., 1, 1336 (2013).

    Article  CAS  Google Scholar 

  16. R. Semnani Rahbar and A. Haji, J. Appl. Polym. Sci., 130, 1337 (2013).

    Article  Google Scholar 

  17. W. Haddar, M. Ben Ticha, A. Guesmi, F. Khoffi, and B. Durand, J. Clean. Prod., 68, 114 (2014).

    Article  CAS  Google Scholar 

  18. W. Haddar, I. Elksibi, N. Meksi, and M. F. Mhenni, Ind. Crop. Prod., 52, 588 (2014).

    Article  CAS  Google Scholar 

  19. A. Haji, A. M. Shoushtari, and M. Abdouss, J. Macromol. Sci. Part A-Pure Appl. Chem., 51, 76 (2014).

    Article  CAS  Google Scholar 

  20. H. Barani, M. N. Broumand, A. Haji, and M. Kazemipur, J. Nat. Fibers, 9, 73 (2012).

    Article  CAS  Google Scholar 

  21. F. Haghiroalsadat, A. Vahidi, M. Sabour, M. Azimzadeh, M. Kalantar, and M. Sharafadini, J. Shahid Sadoughi Uni. Med. Sci., 19, 472 (2011).

    Google Scholar 

  22. C. Wang and Y. Qiu, J. Appl. Polym. Sci., 123, 1000 (2011).

    Article  Google Scholar 

  23. C. W. Kan and C. W. M. Yuen, Plasma Process. Polym., 3, 627 (2006).

    Article  CAS  Google Scholar 

  24. C.-W. Kan and C.-W. M. Yuen, Text. Prog., 39, 121 (2007).

    Article  Google Scholar 

  25. K. H. Kale and A. N. Desai, Indian J. Fibre Text. Tes., 36, 289 (2011).

    CAS  Google Scholar 

  26. R. Shishoo, “Plasma Technologies for Textiles”, Woodhead Publishing, Cambridge, 2007.

    Book  Google Scholar 

  27. H. Ghouila, N. Meksi, W. Haddar, M. F. Mhenni, and H. B. Jannet, Ind. Crop. Prod., 35, 31 (2012).

    Article  CAS  Google Scholar 

  28. S. Haar, E. Schrader, and B. M. Gatewood, Cloth. Text. Res. J., 31, 97 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminoddin Haji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji, A., Qavamnia, S.S. Response surface methodology optimized dyeing of wool with cumin seeds extract improved with plasma treatment. Fibers Polym 16, 46–53 (2015). https://doi.org/10.1007/s12221-015-0046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0046-5

Keywords

Navigation