Skip to main content
Log in

The influence of cure pressure on microstructure, temperature field and mechanical properties of advanced polymer-matrix composite laminates

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Under a given curing process, various cure pressure conditions were designed to evaluate the influence of cure pressure on composite microstructure, temperature field and mechanical properties. A series of composite laminates of different technological parameters were manufactured. The locations of defect in the composite laminates were determined using phased array ultrasonic flaw detection technology. A characterization of microstructure within the composite laminates was obtained using optical digital microscope. The tensile properties test was used to establish the relationship between cure pressure and mechanical properties. Results reveal that the delamination exists in the low pressure curing stage (below 0.2 MPa), the voids mainly exist in the two forms of columnar shape and globular shape, and their number and size decrease as the cure pressure increases, the cure reaction moment occurs to delay due to the actual heating rate reduces. The tensile strength increases as the porosity deceases and the tensile modulus is insensitive to the porosity, which are consistent with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. W. Davies, R. J. Day, D. Bond, A. Nesbitt, J. Ellis, and E. Gardon, Compos. Sci. Technol., 67, 1895 (2007).

    Article  Google Scholar 

  2. M. G. Bader, Compos., A33, 924 (2002).

    Google Scholar 

  3. S. L. Agius, K. J. C. Magniez, and B. L. Fox, Compos., B47, 235 (2013).

    Google Scholar 

  4. C. Nightingale and R. Day, Compos., A33, 1025 (2002).

    Google Scholar 

  5. L. K. Grunenfelder and S. R. Nutt, Compos. Sci. Technol., 70, 2306 (2010).

    Article  Google Scholar 

  6. S. Hernández, F. Sket, J. M. Molina-Aldareguía, C. González, and J. L. Lorca, Compos. Sci. Technol., 71, 1338 (2011).

    Article  Google Scholar 

  7. T. S. Lundström and B. R. Gebart, Polym. Compos., 15, 27 (1994).

    Article  Google Scholar 

  8. F. Y. C. Boey, Polym. Test., 9, 373 (1990).

    Google Scholar 

  9. D. Abraham, S. Mathews, and R. McHaahagger, Compos., A29, 799 (1998).

    Google Scholar 

  10. A. Singh, C. B. Saunders, J. W. Barnard, V. J. Lopata, W. Kremers, T. E. McDougall, M. Chung, and M. Tateishi, Radiat. Phys. Chem., 48, 160 (1996).

    Article  Google Scholar 

  11. W. I. Lee, A. C. Loos, and G. S. Springer, J. Compos. Mater., 16, 516 (1982).

    Google Scholar 

  12. S. Hernández, F. Sket, C. González, and J. L. Lorca, Compos. Sci. Technol., 85, 77 (2013).

    Article  Google Scholar 

  13. J. L. Kardos, M. P. Dudukovic, and R. Dave, Adv. Polym. Sci., 80, 116 (1986).

    Google Scholar 

  14. J. Muric-Nesic, P. Compston, and Z. H. Stachurski, Compos., A42, 324 (2011).

    Google Scholar 

  15. T. Naganuma, K. Naito, J. Kyono, and Y. Kagawa, Compos. Sci. Technol., 69, 2430 (2009).

    Google Scholar 

  16. F. Y. C. Boey and S. W. Lye, Compos., 23, 263 (1992).

    Article  Google Scholar 

  17. J. M. Tang, W. I. Lee, and G. S. Springer, J. Compos. Mater., 21, 430 (1987).

    Article  Google Scholar 

  18. L. Liu, B. M. Zhang, D. F. Wang, and Z. J. Wu, Compos. Struct., 73, 306 (2006).

    Google Scholar 

  19. K. Bowles and S. Frimpong, J. Compos. Mater., 26, 1489 (1992).

    Article  Google Scholar 

  20. L. Liu, B. M. Zhang, and Z. J. Wu, J. Mater. Sci. Technol., 21, 89 (2005).

    Google Scholar 

  21. J. Yu, J. C. Chen, Z. J. Hong, and J. Feng, Acta Mater. Compos. Sinica, 28, 150 (2011).

    CAS  Google Scholar 

  22. P. Olivier, J. P. Cottu, and B. Ferret, Compos., 26, 511 (1995).

    Article  Google Scholar 

  23. J. Andrew, Ph.D. Dissertation, University of New Brunswick, New Brunswick, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S.J., Zhan, L.H., Chen, R. et al. The influence of cure pressure on microstructure, temperature field and mechanical properties of advanced polymer-matrix composite laminates. Fibers Polym 15, 2404–2409 (2014). https://doi.org/10.1007/s12221-014-2404-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2404-0

Keywords

Navigation