Skip to main content
Log in

Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present study, nanofibrils of cellulose are extracted from waste jute fibers using high energy planetary ball milling process in wet condition. The rate of refinement of untreated fibers having non-cellulosic contents was found slower than treated fibers due to strong holding of fiber bundles by non-cellulosic contents. At the end of three hours of wet milling, untreated fibers were refined to the size of 850 nm and treated fibers were refined to the size of 443 nm. In the subsequent stage, composite films of poly lactic acid (PLA) were prepared by solvent casting with 3 wt% loading of untreated jute nanofibrils, treated jute nanofibrils and microcrystalline cellulose. The influence of non-cellulosic contents on mechanical properties of PLA films are investigated based on results of tensile test, dynamic mechanical analysis and differential scanning calorimetry. The maximum improvement was observed in case of treated jute nanofibril/PLA composite film where initial modulus and tensile strength increased by 207.69 % and 168.67 %, respectively as compared to neat PLA film. These improvements are attributed to the increased interaction of treated jute nanofibrils with PLA matrix due to their higher precentage of cellulosic contents and mechanically activated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Klemm, D. Schumann, F. Kramer, N. Hebler, M. Hornung, H. Schmauder, and S. Marsch, Adv. Polym. Sci., 205, 49 (2006).

    Article  CAS  Google Scholar 

  2. T. Zimmermann, N. Bordeanu, and E. Strub, Carbohyd. Polym., 79, 1086 (2010).

    Article  CAS  Google Scholar 

  3. A. J. Svagan, M. A. Samir, and L. A. Berglund, Adv. Mater., 20, 1263 (2008).

    Article  CAS  Google Scholar 

  4. M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).

    Article  CAS  Google Scholar 

  5. H. Fukuzumi, T. Saito, Y. Kumamoto, and A. Isogai, Biomacromolecules, 10, 1584 (2009).

    Article  Google Scholar 

  6. H. Wang, L. Huang, and L. Yafei, Fiber. Polym., 10, 442 (2009).

    Article  CAS  Google Scholar 

  7. V. Baheti, V. V. T. Padil, J. Militky, M. Cernik, and R. Mishra, J. Fiber Bioeng. Informat., 6, 175 (2013).

    Article  Google Scholar 

  8. M. F. Rosa, E. S. Medeiros, J. A. Malmonge, K. S. Gregorski, D. F. Wood, L. H. C. Mattoso, G. Glenn, W. J. Orts, and S. H. Imam, Carbohyd. Polym., 81, 83 (2010).

    Article  CAS  Google Scholar 

  9. D. Pasquini, E. D. M. Teixeira, A. A. D. S. Curvelo, M. N. Belgacem, and A. Dufresne, Ind. Crop Prod., 32, 486 (2010).

    Article  CAS  Google Scholar 

  10. R. Zuluaga, J. L. Putaux, J. Cruz, J. Velez, I. Mondragon, and P. Ganan, Carbohyd. Polym., 76, 51 (2009).

    Article  CAS  Google Scholar 

  11. R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao, Carbohyd. Polym., 76, 94 (2009).

    Article  CAS  Google Scholar 

  12. B. Wang and M. Sain, Compos. Sci. Technol., 67, 2521 (2007).

    Article  CAS  Google Scholar 

  13. A. Alemdar and M. Sain, Bioresource Technology, 99, 1664 (2008).

    Article  CAS  Google Scholar 

  14. N. Reddy and Y. Yang, Polymer, 46, 5494 (2005).

    Article  CAS  Google Scholar 

  15. D. Plackett, T. L. Andersen, W. B. Pedersen, and L. Nielsen, Compos. Sci. Technol., 63, 1287 (2003).

    Article  CAS  Google Scholar 

  16. J. Gassan and A. K. Bledzki, J. Appl. Polym. Sci., 71, 623 (1999).

    Article  CAS  Google Scholar 

  17. T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, Compos. Part A-Appl. S., 41, 499 (2010).

    Article  Google Scholar 

  18. D. Ray, B. K. Sarkar, R. K. Basak, and A. K. Rana, J. Appl. Polym. Sci., 94, 123 (2004).

    Article  CAS  Google Scholar 

  19. M. S. Islam, K. L. Pickering, and N. J. Foreman, Compos. Part A-Appl. S., 41, 596 (2010).

    Article  Google Scholar 

  20. T. H. Nam, S. Ogihara, N. H. Tung, and S. Kobayashi, Compos. Part B-Eng., 42, 164 (2011).

    Article  Google Scholar 

  21. V. Baheti and J. Militky, Fiber. Polym., 14, 133 (2013).

    Article  CAS  Google Scholar 

  22. V. Baheti, R. Abbasi, J. Militky, and J. Dobias, Vlakna a Textil, 19, 10 (2012).

    CAS  Google Scholar 

  23. V. Baheti, J. Militky, and M. Marsalkova, Polym. Compos., 34, 2133 (2013).

    Article  CAS  Google Scholar 

  24. H. Liu, L. You, H. Jin, and W. Yu, Fiber. Polym., 14, 389 (2013).

    Article  CAS  Google Scholar 

  25. H. Choi and J. Lee, Fiber. Polym., 13, 217 (2012).

    Article  CAS  Google Scholar 

  26. M. Akerholm, B. Hinterstoisser, and L. Salmén, Carbohyd. Res., 339, 569 (2004).

    Article  CAS  Google Scholar 

  27. R. Tokoro, D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, and T. Fujiura, J. Mater. Sci., 43, 775 (2008).

    Article  CAS  Google Scholar 

  28. L. Petersson and K. Oksman, Compos. Sci. Technol., 66, 2187 (2006).

    Article  CAS  Google Scholar 

  29. S. Cho, H. Park, Y. Yun, and H. Jin, Fiber. Polym., 14, 1001 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Baheti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baheti, V., Mishra, R., Militky, J. et al. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fibers Polym 15, 1500–1506 (2014). https://doi.org/10.1007/s12221-014-1500-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1500-5

Keywords

Navigation