Skip to main content
Log in

Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mohanty, M. Misra, L. T. Drzal, S. E. Selke, B. R Harte, and G. Hinrichsen, Natural fibers, Biopolymers and Biocomposites: Introduction, Talor & Francis, Boca Raton, 2005.

    Book  Google Scholar 

  2. D. Cho, Plastic Magazine, 8, 44 (2006).

    Google Scholar 

  3. D. Choi, Polym. Sci. Technol., 13, 81 (2002).

    Google Scholar 

  4. S. O. Han and M. H. Han, Chemistry World, 2002. 7.

  5. N. M. Stark and M. Maturana, Polym. Degrad. Stab., 86, 1 (2004).

    Article  CAS  Google Scholar 

  6. M. S. Nikolic and J. Djonlagic, Polym. Degrad. Stab., 74, 263 (2001).

    Article  CAS  Google Scholar 

  7. M. Okada, Prog. Polym. Sci., 27, 87 (2002).

    Article  CAS  Google Scholar 

  8. J. H. Sim, D. Cho, and J. S. Yoon, Polym. Sci. Technol., 19, 299 (2008).

    Google Scholar 

  9. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol., 13, 460 (2002).

    CAS  Google Scholar 

  10. S. O. Han, S. M. Lee, W. H. Park, and D. Cho, J. Appl. Polym. Sci., 100, 4972 (2006).

    Article  CAS  Google Scholar 

  11. S. W. Kim, S. Oh, and K. Lee, Radiation Physics and Chemistry, 76, 1711 (2007).

    Article  CAS  Google Scholar 

  12. D. G. Hepworth, J. F. V. Vincent, G. Jeronimidis, and D. M. Bruce, Composites, Part A, 3, 599 (2000).

    Article  Google Scholar 

  13. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, Macromolecular Symposia, 245/246, 539 (2006).

    Article  CAS  Google Scholar 

  14. S. H. Lee and S. Wang, Composites: Part A, 37, 80 (2006).

    Article  CAS  Google Scholar 

  15. S. O. Han, H. S. Kim, Y. J. Yoon, Y. B. Seo, and M. W. Lee, KR Patent, 10-0867424 (2008).

  16. J. M. Felix, P. Gatenholm, and J. P. Schreiber, Polym. Compos., 14, 449 (1993).

    Article  CAS  Google Scholar 

  17. A. M. Edderozeya, H. M. Akil, A. B. Azhar, and M. I. Zainal Ariffin, Mater. Lett., 61, 2023 (2007).

    Article  Google Scholar 

  18. M. Jacob, B. Francis, K. T. Varughese, and S. Thoma, Macromol. Mater. Eng., 291, 1119 (2006).

    Article  CAS  Google Scholar 

  19. J. M. Felix and P. Gatenholm, J. Appl. Polym. Sci., 42, 609 (1991).

    Article  CAS  Google Scholar 

  20. M. S. Sreekala and S. Thomas, Compos. Sci. Technol., 63, 861 (2003).

    Article  CAS  Google Scholar 

  21. A. V. Gonzalez, J. M. C. Uc, R. Olayo, and P. J. H. Franco, Composites Part B: Engineering, 30, 309 (1999).

    Article  Google Scholar 

  22. X. Colom, F. Carrillo, F. Nogues, and P. Garriga, Polym. Degrad. Stab., 80, 543 (2003).

    Article  CAS  Google Scholar 

  23. M. Abdelmouleh, S. Boufi, M. N. Belgacem, A. P. Duarte, A. B. Salah, and A. Gandini, International Journal of Adhesion & Adhesives 24, 43 (2004).

    Article  CAS  Google Scholar 

  24. B. D. Park, S. G. Wi, K. H. Lee, A. P. Singh, T. H. Yoon, and Y. S. Kim, Biomass and Bioenergy, 27, 353 (2004).

    Article  CAS  Google Scholar 

  25. B. Xial, X. F. Sun, and R. Sun, Polym. Degrad. Stab., 74, 307 (2001).

    Article  Google Scholar 

  26. A. M. A. Nada, S. Kamel, and M. El-Sakhawy, Polym. Degrad. Stab., 70, 347 (2000).

    Article  CAS  Google Scholar 

  27. H. Yang, R. Yang, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  28. H. Y. Choi, S. O. Han, and J. S. Lee, Appl. Surface Sci., 255, 2466 (2008).

    Article  CAS  Google Scholar 

  29. B. Wang, S. Panigrahi, L. Tabil, W. Crerar, S. Sokansanj, and L. Braun, The Canadian Society for Engineering in Agricultural Food, and Biological Systems, CSAE/SCGR 2003 Meeting Montréal, Québec paper No. 03-337, 2003.

  30. H. Y. Choi, S. O. Han, and J. S. Lee, Composite Interfaces, 16, 359 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Soon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.Y., Lee, J.S. Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite. Fibers Polym 13, 217–223 (2012). https://doi.org/10.1007/s12221-012-0217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0217-6

Keywords

Navigation