Skip to main content
Log in

Photocatalytic degradation of formaldehyde by silk mask paper loading nanometer titanium dioxide

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silk mask paper with different adsorbability was prepared by changing the beating degree of silk pulp and the basis weight of silk paper, and photocatalytic silk mask paper was prepared by loading nanometer titanium dioxide (nano-TiO2) on the silk mask paper, then degradation of formaldehyde by silk mask paper loading nano-TiO2 under daylight lamps and ultraviolet lamps were investigated, respectively. Results showed that silk mask paper could adsorb formaldehyde and had higher adsorption efficiency in the initial stage, and the adsorption/desorption equilibrium could be basically achieved in 60 minutes. The adsorption capacity of silk mask paper made from silk pulp with beating degree of 45 oSR was relatively low, and it increased with the increase of beating degree, but there was little change in adsorption when the beating degree of silk pulp exceeded 65 oSR. Under daylight lamps, 26.61 %, 31.42 % and 38.21 % of formaldehyde could be degraded in 180 minutes by silk mask paper loading 1 wt%, 3 wt% and 5 wt% nano-TiO2, respectively. However, under ultraviolet (UV) lamps, 46.23 %, 55.47 % and 66.38 % of formaldehyde could be degraded within the same time, respectively. More formaldehyde could be degraded by photocatalytic silk mask paper under UV lamps than under daylight lamps, and the more the load of nano-TiO2 on the silk mask paper, the higher the degradation rate of formaldehyde within the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Molhave, Environ. Int. 15, 65 (1989).

    Article  Google Scholar 

  2. R. Atkinson, Atmos. Environ., 34, 2063 (2000).

    Article  CAS  Google Scholar 

  3. M. R. Hoffmann, S. T. Martin, W. Choi, and B. W. Bahnemann, Chem. Rev., 95, 69 (1995).

    Article  CAS  Google Scholar 

  4. W. K. Jo, J. H. Park, and H. D. Chun, J. Photoch. Photobio. A., 148, 109 (2002).

    Article  CAS  Google Scholar 

  5. C. R. Esterkin, A. C. Negro, O. M. Alfano, and A. E. Cassano, AIChE. J., 51, 2298 (2005).

    Article  CAS  Google Scholar 

  6. T. N. Obee and R. T. Brown, Environ. Sci. Technol., 29, 1223 (1995).

    Article  CAS  Google Scholar 

  7. L. F. Liu, S. B. Zhao, and F. L. Yang, Chin Environ. Sci., 29, 362 (2009).

    CAS  Google Scholar 

  8. M. L. Kaariainen, T. O. Kaariainen, and D. C. Cameron, Thin Solid Films, 517, 6666 (2009).

    Article  CAS  Google Scholar 

  9. M. Montazer, E. Pakdel, and M. B. Moghadam, Fiber. Polym., 11, 967 (2010).

    Article  CAS  Google Scholar 

  10. Y. Hu, D. Rakhmawaty, M. Matsuoka, M. Takeuchin, and M. Anpo, J. Porous Mater., 13, 335 (2006).

    Article  CAS  Google Scholar 

  11. K. C. Wang, A. M. Morris, and J. D. Holmes, Chem. Mater., 17, 1269 (2005).

    Article  CAS  Google Scholar 

  12. J. C. Yu, J. G. Yu, W. K. Ho, and L. Z. Zhang, Chem. Commun., 19, 1942 (2001).

    Article  Google Scholar 

  13. O. Carp, C. L. Huisman, and A. Reller, Prog. Solid. State. Chem., 32, 33 (2004).

    Article  CAS  Google Scholar 

  14. H. Liu, Z. Lian, X. Ye, and W. Shangguan, Chemosphere, 60, 630 (2005).

    Article  CAS  Google Scholar 

  15. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C1., 1, 1 (2000).

    Article  CAS  Google Scholar 

  16. Y. P. Wu, W. M. Zhang, C. F. Ma, Y. W. Lu, and L. Liu, Sci Chin. Technol. Sci., 53, 150 (2010).

    Article  Google Scholar 

  17. H. L. Yu, K. L. Zhang, and C. Rossi, Indoor. Built. Environ., p.1, 2007.

    Google Scholar 

  18. T. P. Teng, T. C. Teng, S. I. Pan, Int. J. Photoenergy., doi:10.1155/2012/739734 (2012).

    Google Scholar 

  19. C. C. Chen, W. J. Yang, and C. Y. Hsu, Superlattice. Microst., 46, 461 (2009).

    Article  CAS  Google Scholar 

  20. P. Evans and D. W. Sheel, Surf. Coat. Tech., 201, 9319 (2007).

    Article  CAS  Google Scholar 

  21. S. H. Zhang, B. F. Hu, B. Xie, S. Y. Zhang, and F. Y. Li, Key. Eng. Mater., 368–372, 1468 (2008).

    Article  Google Scholar 

  22. J. Yu and X. Zhao, Mater. Res. Bull., 35, 1293 (2000).

    Article  CAS  Google Scholar 

  23. S. Dor, S. Ruhle, A. Ofir, M. Adler, L. Grinis, and A. Zaban, Colloid. Surface. A., 342, 70 (2009).

    Article  CAS  Google Scholar 

  24. L. Z. Sha and H. F. Zhao, Fiber. Polym., 13, 1159 (2012).

    Article  CAS  Google Scholar 

  25. T. X. Liu, F. B. Li, and X. Z. Li, J. Hazard. Mater., 152, 347 (2008).

    Article  CAS  Google Scholar 

  26. H. F. Zhao and L. Z. Sha, Pack. Eng., 29, 22 (2008).

    CAS  Google Scholar 

  27. H. Yamada, H. Nakao, Y. Takasu, and K. Tsubouchi, J. Mater. Sci. Eng. C., 14, 41 (2001).

    Article  Google Scholar 

  28. H. R. Zhang and M. Wang, Environ. Eng., 21, 58 (2003).

    CAS  Google Scholar 

  29. B. Z. Tian, E. T. Yang, and C. Jiang, J. Text. Res., 29, 30 (2008).

    CAS  Google Scholar 

  30. L. Z. Sha and Z. J. Wang, Trans. Chin. Pulp. Pap., 20, 122 (2005).

    Google Scholar 

  31. A. J. Bard, J. Photochem., 10, 59 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zheng Sha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sha, LZ., Zhao, HF. & Xiao, GN. Photocatalytic degradation of formaldehyde by silk mask paper loading nanometer titanium dioxide. Fibers Polym 14, 976–981 (2013). https://doi.org/10.1007/s12221-013-0976-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0976-8

Keywords

Navigation