Skip to main content
Log in

Mechanical properties and crystal structure transition of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Mechanical properties of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers with 70 mol% butylene terephthalate (BT) were intensively investigated. Chemical structure composed of hard BT units and soft butylene succinate (BS) units made contributions to the higher elongation at break and lower initial modulus of PBST fibers than poly(butylene terephthalate) (PBT) fibers. Moreover, PBST fibers had better elastic properties than PBT fibers by exploring their elastic recovery. The stretch elastic recovery mechanism of PBST fibers was clarified from the point of crystal structure transition. According to the preliminary studies by wide angle X-ray diffraction (WAXD) measurements, two polymorphs (α form and β form) were confirmed when PBST fibers were applied to different deformations. With the help of intensive study by small angle X-ray scattering (SAXS) measurements, the crystal structure transition of PBST fibers was further verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Kim and J. H. Kim, Fiber. Polym., 12, 602 (2011).

    Article  CAS  Google Scholar 

  2. J. H. Kim, S. S. Yang, and S. M. Hudson, Fiber. Polym., 12, 771 (2011).

    Article  CAS  Google Scholar 

  3. F. X. Li, J. X. Xu, J. Y. Yu, and A. M. Cao, Polym. Degrad. Stabil., 92, 1053 (2007).

    Article  CAS  Google Scholar 

  4. F. X. Li, S. L. Luo, C. Ma, Y. Li, J. Y. Yu, and A. M. Cao, J. Appl. Polym. Sci., 118, 623 (2010).

    CAS  Google Scholar 

  5. F. X. Li, J. X. Xu, Q. H. Hao, Q. B. Li, J. Y. Yu, and A. M. Cao, J. Polym. Sci.: Pol. Phys., 44, 1635 (2006).

    Article  CAS  Google Scholar 

  6. S. L. Luo, F. X. Li, J. Y. Yu, and A. M. Cao, J. Appl. Polym. Sci., 115, 2203 (2010).

    Article  CAS  Google Scholar 

  7. Y. G. Jeong, W. H. Jo, and S. C. Lee, Polymer, 44, 3259 (2003).

    Article  CAS  Google Scholar 

  8. Y. S. Sun and E. M. Woo, Macromolecules, 32, 7836 (1999).

    Article  CAS  Google Scholar 

  9. R. H. Lin and E. M. Woo, Polymer, 41, 121 (2000).

    Article  CAS  Google Scholar 

  10. R. J. Samuels, J. Polym. Sci.: Polym. Phys. Ed, 13, 1417 (1975).

    Article  CAS  Google Scholar 

  11. K. Tashiro, Y. Nakai, M. Kobayashi, and H. Tadokoro, Macromolecules, 13, 137 (1980).

    Article  CAS  Google Scholar 

  12. K. Q. Chen and X. Z. Tang, J. Appl. Polym. Sci., 91, 1967 (2004).

    Article  CAS  Google Scholar 

  13. I. H. Hall and M. G. Pass, Polymer, 17, 807 (1976).

    Article  CAS  Google Scholar 

  14. A. A. Apostolov, F. Stoyko, S. Manfred, P. Rahul, and M. James, Macromolecules, 33, 6856 (2000).

    Article  CAS  Google Scholar 

  15. Y. Ichikawa, H. Kondo, Y. Igarashi, K. Noguchi, K. Okuyama, and A. Washiyama, Polymer, 41, 4719 (2000).

    Article  CAS  Google Scholar 

  16. Z. Mencik, Chem. Prum., 17, 78 (1967).

    CAS  Google Scholar 

  17. H. Watanabe, Kobunshi Ronbunshu, 33, 299 (1976).

    Article  Google Scholar 

  18. S. Buchner, D. Wiswe, and H. G. Zachmann, Polymer, 30, 480 (1989).

    Article  CAS  Google Scholar 

  19. H. Koyano, Y. Yamamoto, Y. Saito, T. Yamanobe, and T. Komoto, Polymer, 39, 4385 (1998).

    Article  CAS  Google Scholar 

  20. A. I. Abou-Kandil and A. H. Windle, Polymer, 48, 4824 (2007).

    Article  CAS  Google Scholar 

  21. A. I. Abou-Kandil and A. H. Windle, Polymer, 48, 5069 (2007).

    Article  CAS  Google Scholar 

  22. A. I. Abou-Kandil, A. Flores, and F. J. Balta Calleja, J. Polym. Res., 15, 373 (2008).

    Article  CAS  Google Scholar 

  23. X. Q. Shi, H. Ito, and T. Kikutani, Polymer, 46, 11442 (2005).

    Article  CAS  Google Scholar 

  24. International Organization for Standardization, “Textiles-Yarns from Packages-Determination of Single-End Breaking Force and Elongation at Break”, ISO 2062:1993, International Organization for Standardization, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faxue Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, X., Li, F. et al. Mechanical properties and crystal structure transition of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers. Fibers Polym 13, 1233–1238 (2012). https://doi.org/10.1007/s12221-012-1233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-1233-2

Keywords

Navigation