Skip to main content
Log in

Fabrication and characterization of silk braided sutures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silk sutures are already used in surgery. Silk is a natural protein fiber and easily prone to microbial infection hence we have developed novel antimicrobial silk braided sutures. Braided silk sutures were fabricated using a circular braiding machine with a 16 carrier arrangement normally used to produce braided structures. The same structure was used to manufacture braids with three different take-up speed levels obtained by changing the cogwheel ratio on the braiding machine. The influence of braid angle, test parameters such as gauge length and extension rate on tenacity and knot strength of braided silk sutures were studied. Silk sutures fabricated at higher braid angle, tested at shorter gauge length and greater test speed showed lower values of tenacity and knot strength. Chitosan was applied on braided silk sutures to impart antimicrobial characteristics. The Scanning electron microscopy study reveals the absence and presence of chitosan on the surface of untreated and treated sutures respectively. The antimicrobial properties of chitosan and tetracycline hydrochloride drug were tested using Agar diffusion method SN 195920 both when applied independently and collectively on silk sutures against Escherichia coli and Staphylococcus aureus. The combined antimicrobial effect of chitosan and tetracycline hydrochloride drug is very good and can be used to develop antimicrobial silk sutures for providing protection against microbial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. C. Chu, “Textile Based Biomaterials for Surgical Applications”, p.167, Marcel Dekker, New York, 2002.

    Google Scholar 

  2. K. Tomihata, M. Suzuki, and N. Tomiya, Biomed. Mater. Eng., 15, 381 (2005).

    CAS  Google Scholar 

  3. S. Saxena, A. R. Ray, A. Kapil, G. Pavon-Djavid, D. Letourneur, B. Gupta, and A. Meddahi-Pelle, Macromol. Biosci., 11, 373 (2011).

    Article  CAS  Google Scholar 

  4. C. K. S. Pillai and C. P. Sharma, J. Biomater. Appl., 25, 291 (2010).

    Article  CAS  Google Scholar 

  5. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  CAS  Google Scholar 

  6. M. Bide, M. Phaneuf, W. Quist, and F. Logerfo, Text. Res. J., 74, 342 (2004).

    Google Scholar 

  7. S. B. Abdessalem, F. Debbabi, H. Jedda, S. Elmarzougui, and S. Mokhtar, Text. Res. J., 79, 247 (2009).

    Article  Google Scholar 

  8. K. Hristov, E. A. Carroll, M. Dunn, and C. Pastore, Text. Res. J., 74, 20 (2004).

    Article  CAS  Google Scholar 

  9. A. G. Heward, R. M. Laing, D. J. Carr, and B. E. Niven, Text. Res. J., 74, 83 (2004).

    Article  CAS  Google Scholar 

  10. D. J. Carr, A. G. Heward, R. M. Laing, and B. E. Niven, J. Text. I., 100, 51 (2009).

    Article  Google Scholar 

  11. E. K. Bayraktar and A. S. Hockenberger, Text. Res. J., 71, 435 (2001).

    Article  CAS  Google Scholar 

  12. E. Karaca and A. S. Hockenberger, Text. Res. J., 75, 297 (2005).

    Article  CAS  Google Scholar 

  13. S. Togo, T. Kubota, T. Takahashi, K. Yoshida, K. Matsuo, D. Morioka, K. Tanaka, and H. Shimada, J. Gastrointest. Surg., 12, 1041 (2008).

    Article  Google Scholar 

  14. R. A. Silva, P. A. Silva, and M. E. Carvalho, Mater. Sci. Forum, 539, 573 (2007).

    Article  Google Scholar 

  15. H. Liu, Z. Ge, Y. Wang, S. L. Toh, V. Sutthikhum, and J. C. H. Goh, J. Biomed. Mater. Res. B: Appl. Biomater., 82, 129 (2007).

    Google Scholar 

  16. O. L. Shanmugasundaram, V. R. Giridev, R. Neelakandan, and M. Madhusoothanan, Ind. J. Fiber Text. Res., 31, 543 (2006).

    CAS  Google Scholar 

  17. A. Ghosh and S. Das, J. Text. I., 99, 165 (2008).

    Article  CAS  Google Scholar 

  18. A. Ghosh, S. Isthiaque, and R. S. Rengasamy, Text. Res. J., 75, 731 (2005).

    Article  CAS  Google Scholar 

  19. V. R. Giri Dev, J. Venugopal, S. Sudha, G. Deepika, and S. Ramakrishna, Carbohyd. Polym., 5, 646 (2009).

    Google Scholar 

  20. S. V. Bhat, B. A Nagasampagi, and M. Sivakumar, “Chemistry of Natural Products”, pp.684–695, Narosa Publishing House, 2005.

  21. O. L. Shanmugasundaram and R. V. Mahendra Gowda, Fiber. Polym., 12, 15 (2011).

    Article  CAS  Google Scholar 

  22. K. Schwach-Abdellaoui, N. Vivien-Castioni, and R. Gurny, Eur. J. Pharm. Biopharm., 50, 83 (2000).

    Article  CAS  Google Scholar 

  23. L. F. Bastos, L. A. Merlo, L. T. Rocha, and M. M. Coelho, Eur. J. Pharmacol., 576, 171 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Viju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viju, S., Thilagavathi, G. Fabrication and characterization of silk braided sutures. Fibers Polym 13, 782–789 (2012). https://doi.org/10.1007/s12221-012-0782-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0782-8

Keywords

Navigation