Skip to main content
Log in

Preparation, structure, and in vitro degradation behavior of the electrospun poly(lactide-co-glycolide) ultrafine fibrous vascular scaffold

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The PLGA ultrafine fibrous scaffold was successfully fabricated by electrospinning. The morphology and properties of the PLGA vascular scaffolds were examined. In particular, the in vitro degradation behavior of the electrospun PLGA vascular scaffolds was investigated by means of morphology, microstructure, mass loss, Mw, and breaking strength characterization. The results showed that electrospun scaffold possessed ultrafine fibrous and porous structure, and had adequate mechanical properties to be developed as a substitute for native blood vessels. In vitro degradation study showed that the PLGA ultrafine fibrous scaffold could biodegrade in the PBS solution, and the mass loss, Mw, and breaking strength studies indicated that degradation rate of the electrospun PLGA nanofibers was greater in the first 2 weeks. After the degradation of 2 weeks, the degradation slowed down. Furthermore, with the extension of the degradation time, the thermal decomposition temperature of the PLGA scaffold decreased gradually. The results indicated that the electrospun PLGA vascular scaffold could be considered as an ideal candidate for tissue-engineered blood vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Wang, Y. Z. Zhang, H. W. Wang, and Z. H. Dong, Int. J. Biol. Macromol., 48, 345 (2011).

    Article  CAS  Google Scholar 

  2. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    Article  CAS  Google Scholar 

  3. M. Gu, K. Wang, W. Li, C. Qin, J. Wang, and L. Dai, Fiber. Polym., 12, 65 (2011).

    Article  CAS  Google Scholar 

  4. S. D. Wang, Y. Z. Zhang, G. B. Yin, H. W. Wang, and Z. H. Dong, J. Appl. Polym. Sci., 113, 2675 (2009).

    Article  CAS  Google Scholar 

  5. S. J. Kim, D. H. Jang, W. H. Park, and B. M. Min, Polymer, 51, 1320 (2010).

    Article  CAS  Google Scholar 

  6. R. Dorati, C. Colonna, I. Genta, T. Modena, and B. Conti, Polym. Degrad. Stab., 95, 697 (2010).

    Article  Google Scholar 

  7. E. A. Sander, A. M. Alb, and E. A. Nauman, J. Biomed. Mater. Res. A, 70, 506 (2004).

    Article  Google Scholar 

  8. V. Rajesh, S. Kirubanandan, and S. K. Dhirendra, Polym. Degrad. Stab., 95, 1605 (2010).

    Article  Google Scholar 

  9. H. J. Shin, C. H. Lee, I. H. Cho, Y. J. Kim, Y. J. Lee, and I. A. Kim, J. Biomater. Sci. Polym. Ed., 17, 103 (2006).

    Article  CAS  Google Scholar 

  10. E. I. Vargha-Butler, E. Kiss, C. N. C. Lam, Z. Keresztes, E. Kalman, and L. Zhang, Colloid. Polym. Sci., 279, 1160 (2001).

    Article  CAS  Google Scholar 

  11. T. I. Croll, A. J. O’Connor, G. W. Stevens, and J. J. Cooper-White, Biomacromolecules, 5, 463 (2004).

    Article  CAS  Google Scholar 

  12. C. E. Holy, S. M. Dang, J. E. Davies, and M. S. Shoichet, Biomaterials, 20, 1177 (1999).

    Article  CAS  Google Scholar 

  13. T. Yoshioka, N. Kawazoe, and T. Tateishi, Biomaterials, 29, 2438 (2008).

    Article  Google Scholar 

  14. L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer, and A. G. Mikos, Biomaterials, 21, 1837 (2000).

    Article  CAS  Google Scholar 

  15. C. M. Vaz, S. V. Tuij, and C. V. C. Bouten, Acta Biomaterial, 1, 575 (2005).

    Article  CAS  Google Scholar 

  16. S. Y. Li, S. D. Wang, Y. Z. Zhang, H. W. Wang, and P. Qiu, Synthetic Fiber China, 11, 22 (2009).

    Google Scholar 

  17. S. Wang, Y. Zhang, H. Wang, G. Yin, and Z. Dong, Biomacromolecules, 10, 2240 (2009).

    Article  CAS  Google Scholar 

  18. S. J. Lee, J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 2891 (2008).

    Article  CAS  Google Scholar 

  19. P. J. Schaner, N. D. Martin, and T. N. Tulenko, J. Vasc. Surg., 40, 146 (2004).

    Article  Google Scholar 

  20. R. P. F. Lanao, S. C. G. Leeuwenburgh, J. G. C. Wolke, and J. A. Jansen, Acta Biomaterialia, 7, 3459 (2011).

    Article  Google Scholar 

  21. H. M. Kim, T. Kokubo, and S. Fujibayashi, J. Biomed. Mater. Res. A, 52, 553 (2000).

    Article  CAS  Google Scholar 

  22. J. Stitzel, J. Liu, S. J. Lee, M. Komura, J. Berry, and S. Soker, Biomaterials, 27, 1088 (2006).

    Article  CAS  Google Scholar 

  23. K. Billiar, J. Murray, and D. Laude, J. Biomed. Mater. Res. A, 56, 101 (2001).

    Article  CAS  Google Scholar 

  24. S. D. Wang, Y. Z. Zhang, G. B. Yin, H. W. Wang, and Z. H. Dong, Mater. Sci. Eng. C, 30, 670 (2010).

    Article  CAS  Google Scholar 

  25. Elisabeth, R. Caroline, M. Liz, B. Jonathan, C. Mike, F. M. Aline, and S. Alberto, Polym. Degrad. Stab., 93, 1869 (2008).

    Article  Google Scholar 

  26. A. M. Reed and D. K. Gilding, Polymer, 22, 494 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shudong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhang, Y. Preparation, structure, and in vitro degradation behavior of the electrospun poly(lactide-co-glycolide) ultrafine fibrous vascular scaffold. Fibers Polym 13, 754–761 (2012). https://doi.org/10.1007/s12221-012-0754-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0754-z

Keywords

Navigation