Skip to main content
Log in

Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In our study, the mechanical properties and degradability of vascular grafts made from poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) at different ratios were investigated. The results showed that the electrospun PCL/PLGA grafts possess good mechanical properties and biodegradability. The tensile and burst strength of the scaffolds met the demands of vascular grafts. In vitro degradation tests indicated that the degradation rate of the materials increased with the percentage of PLGA, and in vivo tests showed that increasing the amount of PLGA is an effective way to promote cell infiltration. Particularly, the electrospun PCL/PLGA blended scaffold with 10% PLGA exhibited a balance of mechanical and degradation properties, making it a promising tissue engineering material for vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen RA, Wu W, Yao MY et al (2014) Nerve regeneration and elastin formation within poly (glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials 35(1):165–173

    Article  Google Scholar 

  2. Kong XY, Han BQ, Li H et al (2012) New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. J Biomed Mater Res, Part A 100A(6):1494–1504

    Article  Google Scholar 

  3. Zhang KH, Yin AL, Huang C et al (2011) Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds in vitro. Polym Degrad Stabil 96(12):2266–2275

    Article  Google Scholar 

  4. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  5. Wu W, Allen RA, Wang YD (2012) Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med 18(7):1148–1153

    Article  Google Scholar 

  6. Li L, Terry CM, Shiu Y et al (2008) Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kedney International 74(10):1247–1261

    Article  Google Scholar 

  7. Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13(8):1845–1866

    Article  Google Scholar 

  8. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1):37–46

    Article  Google Scholar 

  9. Ye SH, Hong Y, Sakaguchi H et al (2014) Nonthrombogenic, biodegradable elastomeric polyurethanes with variable sulfobetaine content. ACS Appl Mater Interfaces 6(24):22796–22806

    Article  Google Scholar 

  10. Jin GZ, Park JH, Lee EJ et al (2014) Utilizing PCL microcarriers for high-purity isolation of primary endothelial cells for tissue engineering. Tissue Engineering Part C-Methods 20(9):761–768

    Article  Google Scholar 

  11. Wang ZH, Cui Y, Wang JN et al (2014) The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710

    Article  Google Scholar 

  12. An J, Wang K, Chen SY et al (2015) Biodegradability, cellular compatibility and cell infiltration of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in comparison with poly (ε-caprolactone) and poly(lactide-co-glycolide). Journal of Bioactive and Compatible Polymers 30(2):209–221

    Article  Google Scholar 

  13. Tang ZG, Callaghan JT, Hunt JA (2005) The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone. Biomaterials 26(33):6618–6624

    Article  Google Scholar 

  14. Sun HF, Mei L, Song CX et al (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27:1735–1740

    Article  Google Scholar 

  15. De Valence S, Tille JC, Mugnai D et al (2012) Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33(1):38–47

    Article  Google Scholar 

  16. Han FX, Jia XL, Dai DD et al (2013) Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials 34(30):7302–7313

    Article  Google Scholar 

  17. Milleret V, Hefti T, Hall H et al (2012) Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater 8(12):4349–4356

    Article  Google Scholar 

  18. Kona S, Dong JF, Liu YL et al (2012) Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. International Journal of Pharmaceutics 423(2):516–524

    Article  Google Scholar 

  19. Nguyen TH, Lee BT (2010) Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science-Materials in Medicine 21(6):1969–1978

    Article  Google Scholar 

  20. Hu J, Sun X, Ma HY et al (2010) Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 31(31):7971–7977

    Article  Google Scholar 

  21. Hong JH, Jeon HJ, Yoo JH et al (2007) Synthesis and characterization of biodegradable poly(epsilon-caprolactone-co-beta-butyrolactone)-based polyurethane. Polym Degrad Stab 92(7):1186–1192

    Article  Google Scholar 

  22. Subramanian A, Krishnan UM, Sethuraman S (2012) Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration. Ann Biomed Eng 40(10):2098–2110

    Article  Google Scholar 

  23. Deitzel JM, Kleinmeyer J, Harris D et al (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272

    Article  Google Scholar 

  24. Kim JY, Cho DW (2009) Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng 86(4–6):1447–1450

    Article  Google Scholar 

  25. Sell SA, McClure MJ, Barnes CP et al (2006) Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed Mater 1(2):72–80

    Article  Google Scholar 

  26. Yamada H, Evans FG (1970) Strength of biological materials. Williams & Wilkins, Baltimore

    Google Scholar 

  27. Konig G, McAllister TN, Dusserre N et al (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550

    Article  Google Scholar 

  28. Versypt ANF, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres - A review. J Control Release 165(1):29–37

    Article  Google Scholar 

  29. LeBlon CE, Pai R, Fodor CR et al (2013) In vitro comparative biodegradation analysis of salt-leached porous polymer scaffolds. J Appl Polym Sci 128(5):2701–2712

    Article  Google Scholar 

  30. Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98(5):1006–1014

    Article  Google Scholar 

  31. Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM et al (2012) Hydrolytic and enzymatic degradation of a poly (ε-caprolactone) network. Polym Degrad Stab 97(8):1241–1248

    Article  Google Scholar 

  32. Yang LQ, Li JX, Meng S et al (2014) The in vitro and in vivo degradation behavior of poly (trimethylene carbonate-co-ε-caprolactone) implants. Polymer 55(20):5111–5124

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (No. 2017YFC1103500), National Natural Science Foundation of China (No. 81671842), and Natural Science Foundation of Tianjin, China (No. 16JCZDJC37600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Chen, S., Tang, D. et al. Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts. Trans. Tianjin Univ. 25, 152–160 (2019). https://doi.org/10.1007/s12209-018-0152-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-018-0152-8

Keywords

Navigation