Skip to main content
Log in

Weight loss and morphology changes of electrospun poly(ɛ-caprolactone) yarns during in vitro degradation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the in vitro degradation of yarns made from PCL electrospun fibers containing various concentrations of ampicillin sodium salt was investigated. PCL fibers were electrospun and collected as well-aligned fiber bundles and then twisted into yarns. Yarn weight loss, morphology changes in the yarns, and morphology changes in the fiber microstructure with degradation were evaluated. Results showed that the electrospun PCL yarns degraded slowly with a weight loss less than 3 % in 12 weeks. The addition of various concentrations of ampicillin salt increased the degradation rate slightly. The morphological changes observed in fiber microstructure suggested that the degradation underwent bulk erosion and the degradation began with the amorphous regions. Revealed by the fiber morphological changes with degradation, the microstructure of electrospun PCL fibers followed the fringed fibril fiber model. The fiber arrangement in the yarn was impaired by the in vitro degradation environment as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. von Burkersroda, L. Schedl, and A. Gopferich, Biomaterials, 23, PII S0142 (2002).

    Article  Google Scholar 

  2. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, Biomaterials, 17, 93 (1996).

    Article  CAS  Google Scholar 

  3. B. D. Ratner, “Biomaterials Science: An Introduction to Materials in Medicine”, Elsevier Academic Press, Amsterdam Boston, 2004.

    Google Scholar 

  4. E. Piskin, J. Biomater. Sci. Polym. Edn., 6, 775 (1995).

    Article  CAS  Google Scholar 

  5. F. M. Shaikh, A. Callanan, E. G. Kavanagh, P. E. Burke, P. A. Grace, and T. M. McGloughlin, Cells Tissues Organs, 188, 333 (2008).

    Article  CAS  Google Scholar 

  6. I. Grizzi, H. Garreau, S. Li, and M. Vert, Biomaterials, 16, 305 (1995).

    Article  CAS  Google Scholar 

  7. S. Shawe, F. Buchanan, and E. Harkin-Jones, J. Mater. Sci., 41, 4832 (2006).

    Article  CAS  Google Scholar 

  8. G. Molea, E. Schonauer, G. Bifulco, and D. D’Angelo, Br. J. Plast. Surg., 53, 137 (2000).

    Article  CAS  Google Scholar 

  9. J. N. Im, J. K. Kim, H. K. Kim, C. H. In, K. Y. Lee, and W. H. Park, Polym. Deg. Stab., 92, 667 (2007).

    Article  CAS  Google Scholar 

  10. S. Freudenberg, S. Rewerk, M. Kaess, C. Weiss, A. Dorn-Beinecke, and S. Post, Eur. Surg. Res., 36, 376 (2004).

    Article  CAS  Google Scholar 

  11. S. M. Li and S. McCarthy, Biomaterials, 20, 35 (1999).

    Article  CAS  Google Scholar 

  12. N. A. Weir, F. J. Buchanan, J. F. Orr, and G. R. Dickson, Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 218, 307 (2004).

    Article  CAS  Google Scholar 

  13. X. H. Zong, Z. G. Wang, B. S. Hsiao, B. Chu, J. J. Zhou, D. D. Jamiolkowski, E. Muse, and E. Dormier, Macromolecules, 32, 8107 (1999).

    Article  CAS  Google Scholar 

  14. T. G. Park, Biomaterials, 16, 1123 (1995).

    Article  CAS  Google Scholar 

  15. M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang, Biomaterials, 20, 1057 (1999).

    Article  CAS  Google Scholar 

  16. E. Vey, C. Roger, L. Meehan, J. Booth, M. Claybourn, A. F. Miller, and A. Saiani, Polym. Deg. Stab., 93, 1869 (2008).

    Article  CAS  Google Scholar 

  17. N. Bolgen, Y. Z. Menceloglu, K. Acatay, I. Vargel, and E. Piskin, J. Biomater. Sci. Polym. Edn., 16, 1537 (2005).

    Article  CAS  Google Scholar 

  18. W. G. Cui, X. H. Li, S. B. Zhou, and J. Weng, Polym. Degr. Stab., 93, 731 (2008).

    Article  CAS  Google Scholar 

  19. B. W. Tillman, S. K. Yazdani, S. J. Lee, R. L. Geary, A. Atala, and J. J. Yoo, Biomaterials, 30, 583 (2009).

    Article  CAS  Google Scholar 

  20. S. Ramakrishna, K. Fujihara, W.E. Teo, T. C. Lim, and Z. Ma, “An Introduction to Electrospinning and Nanofibers”, World Scientific Publishing Co. Pte. Ltd., Danvers, MA, 2005.

    Book  Google Scholar 

  21. D. Nava, C. Salom, M. G. Prolongo, and R. M. Masegosa, J. Mater. Proc. Technol., 143, 171 (2003).

    Article  Google Scholar 

  22. H. Liu, K. Leonas, and Y. Zhao, Journal of Engineered Fibers and Fabrics, In press (2010).

  23. S. A. M. Ali, P. J. Doherty, and D. F. Williams, J. Biom. Mater. Res., 27, 1409 (1993).

    Article  CAS  Google Scholar 

  24. M. H. Huang, S. M. Li, and M. Vert, Polymer, 45, 8675 (2004).

    Article  CAS  Google Scholar 

  25. S. M. Li, J. Biom. Mater. Res., 48, 342 (1999).

    Article  CAS  Google Scholar 

  26. L. C. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, J. P. Vacanti, R. Langer, and A. G. Mikos, Biomaterials, 21, 1595 (2000).

    Article  CAS  Google Scholar 

  27. E. A. Schmitt, D. R. Flanagan, and R. J. Linhardt, Macromolecules, 27, 743 (1994).

    Article  CAS  Google Scholar 

  28. C. S. Proikakis, N. J. Mamouzelos, P. A. Tarantili, and A. G. Andreopoulos, Polym. Degr. Stab., 91, 614 (2006).

    Article  CAS  Google Scholar 

  29. J. S. Lee, G. S. Chae, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Bio-Medical Materials and Engineering, 14, 185 (2004).

    CAS  Google Scholar 

  30. H. Kweon, M. K. Yoo, I. K. Park, T. H. Kim, H. C. Lee, H. S. Lee, J. S. Oh, T. Akaike, and C. S. Cho, Biomaterials, 24, PII S0142 (2003).

    Google Scholar 

  31. H. F. Sun, L. Mei, C. X. Song, X. M. Cui, and P. Y. Wang, Biomaterials, 27, 1735 (2006).

    Article  CAS  Google Scholar 

  32. D. R. Chen, J. Z. Bei, and S. G. Wang, Polym. Deg. Stab., 67, 455 (2000).

    Article  CAS  Google Scholar 

  33. A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003).

    Article  CAS  Google Scholar 

  34. S. A. Papadimitriou, G. Z. Papageorgiou, and D. N. Bikiaris, Eur. Polym. J., 44, 2356 (2008).

    Article  CAS  Google Scholar 

  35. C.-C. Chu, J. A. Von Fraunhofer, and H. P. Greisler, “Wound Closure Biomaterials and Devices”, CRC Press, Boca Raton, 1997.

    Google Scholar 

  36. S. A. M. Ali, S. P. Zhong, P. J. Doherty, and D. F. Williams, Biomaterials, 14, 648 (1993).

    Article  CAS  Google Scholar 

  37. C. W. Hall, “Surgical Research—recent Developments: Proceedings of the First Annual Scientific Session of the Academy of Surgical Research”, Pergamon Press, New York, 1985.

    Google Scholar 

  38. N. D. Miller and D. F. Williams, Biomaterials, 5, 365 (1984).

    Article  CAS  Google Scholar 

  39. S. P. Zhong, P. J. Doherty, and D. F. Williams, Clinical Materials, 14, 183 (1993).

    Article  Google Scholar 

  40. C. C. Chu, J. Appl. Polym. Sci., 26, 1727 (1981).

    Article  CAS  Google Scholar 

  41. C. C. Chu and A. Browning, J. Biom. Mater. Res., 22, 699 (1988).

    Article  CAS  Google Scholar 

  42. S. B. Warner, “Fiber Science”, Prentice Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Leonas, K.K. Weight loss and morphology changes of electrospun poly(ɛ-caprolactone) yarns during in vitro degradation. Fibers Polym 11, 1024–1031 (2010). https://doi.org/10.1007/s12221-010-1024-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-1024-6

Keywords

Navigation