Skip to main content
Log in

Normalized Ground State Solutions of Nonlinear Schrödinger Equations Involving Exponential Critical Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We are concerned with the following nonlinear Schrödinger equation:

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda u=f(u) \ \ \textrm{in}\ \mathbb {R}^{2},\\ u\in H^{1}(\mathbb {R}^{2}),~~~ \int _{\mathbb {R}^2}u^2dx=\rho , \end{array}\right. } \end{aligned} \end{aligned}$$

where \(\rho >0\) is given, \(\lambda \in \mathbb {R}\) arises as a Lagrange multiplier and f satisfies an exponential critical growth. Without assuming the Ambrosetti–Rabinowitz condition, we show the existence of normalized ground state solutions for any \(\rho >0\). The proof is based on a constrained minimization method and the Trudinger–Moser inequality in \(\mathbb {R}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  2. Alves, C.O., Souto, M.A.S., Montenegro, M.: Existence of a ground state solution for a nonlinear scalar field equation with critical growth. Calc. Var. Partial Differ. Equ. 43, 537–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Ji, C., Miyagaki, O.H.: Multiplicity of normalized solutions for a Schrödinger equation with critical growth in \({\mathbb{R}}^N\). arXiv:2103.07940 (2021)

  4. Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R} ^{N}\). Calc. Var. Partial Differ. Equ. 61(18), 24 (2022)

    MATH  Google Scholar 

  5. Bao, W., Cai, Y.: Mathmatical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Soave, N.: Correction to“A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems’’. J. Funct. Anal. 272, 4998–5037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartsch, T., Soave, N.: Correction to“A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems’’. J. Funct. Anal. 275, 516–521 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., De Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100, 75–83 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations I: existence of a ground state. Arch. Rat. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct. Anal. 280, 108989 (2021)

    Article  MATH  Google Scholar 

  12. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R} ^2\). Commun. Partial Differ. Equ. 29, 407–435 (1992)

    Article  MATH  Google Scholar 

  13. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MATH  Google Scholar 

  14. do Ó, J.M.: \(N\)-Laplacian equations in \({\mathbb{R}}^N\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. do Ó, J.M., Souto, M.A.S.: On a class of nonlinear Schrödinger equations in \({\mathbb{R}}^2\) involving critical growth. J. Differ. Equ. 174, 289–311 (2001)

    Article  MATH  Google Scholar 

  16. Esry, B.D., Greene, C.H., Burke, J.J.P., Bohn, J.L.: Hartree–Fock theory for double condensates. J. L. Phys. Rev. Lett 78, 3594–3597 (1997)

    Article  Google Scholar 

  17. Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A 43, 213001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 107. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  19. Hajaiej, H., Stuart, C.: Existence and non-existence of Schwarz symmetric ground states for elliptic eigenvalue problems. Ann. Math. Pura Appl. 184, 297–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^{2}\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24, 609–646 (2019)

    MATH  Google Scholar 

  21. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger equations. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02228-0

    Article  MATH  Google Scholar 

  23. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59(174), 43 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl. 164, 158–179 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X.: Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities. Calc. Var. Partial Differ. Equ. 60(169), 14 (2021)

    MATH  Google Scholar 

  26. Mederski, J., Schino, J.: Least energy solutions to a cooperative system of Schrödinger equations with prescribed \(L^2\)-bounds: at least \(L^2\)-critical growth. Calc. Var. Partial Differ. Equ. 61(10), 31 (2022)

    MATH  Google Scholar 

  27. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stuart, C.A.: Bifurcation in \(L^{p}(\mathbb{R} ^N)\) for a semilinear elliptic equation. Proc. Lond. Math. Soc. 57, 511–541 (1988)

    Article  MATH  Google Scholar 

  30. Wei, J.C., Wu, Y.Z.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283, 109574 (2022)

    Article  MATH  Google Scholar 

  31. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  MATH  Google Scholar 

  32. Willem, M.: Minimax Theorems. Birkhäuser Verlag, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research of Xiaojun Chang is supported by National Natural Science Foundation of China (Grant No. 11971095), while Duokui Yan is supported by National Natural Science Foundation of China (Grant No. 11871086). This work was done when Xiaojun Chang visited the Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté during the period from 2021 to 2022 under the support of China Scholarship Council (Grant No. 202006625034), and he would like to thank the Laboratoire for their support and kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Liu, M. & Yan, D. Normalized Ground State Solutions of Nonlinear Schrödinger Equations Involving Exponential Critical Growth. J Geom Anal 33, 83 (2023). https://doi.org/10.1007/s12220-022-01130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01130-8

Keywords

Mathematics Subject Classification

Navigation