Skip to main content
Log in

Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We obtain upper and lower bounds for Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. A very general upper bound is proved, which depends only on the geometry of the fixed boundary and on the measure of the interior. Sharp lower bounds are given for hypersurfaces of revolution with connected boundary: We prove that each eigenvalue is uniquely minimized by the ball. We also observe that each surface of revolution with connected boundary is Steklov isospectral to the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  2. Cianci, D., Girouard, A.: Large spectral gaps for Steklov eigenvalues under volume constraints and under localized conformal deformations. Ann. Global Anal. Geom. (to appear)

  3. Colbois, B.: The spectrum of the Laplacian: a geometric approach. In: Geometric and Computational Spectral Theory, Volume 700 of Contemporary Mathematics, pp. 1–40. American Mathematical Society, Providence (2017)

  4. Colbois, B., Maerten, D.: Eigenvalues estimate for the Neumann problem of a bounded domain. J. Geom. Anal. 18(4), 1022–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colbois, B., Dryden, E.B., El Soufi, A.: Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds. Bull. Lond. Math. Soc. 42(1), 96–108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261(5), 1384–1399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the spectrum of a compact hypersurface. J. Reine Angew. Math. 683, 49–65 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Colbois, B., Girouard, A., Raveendran, B.: The Steklov spectrum and coarse discretizations of manifolds with boundary (2016). arXiv:1612.07665

  9. Colbois, B., El Soufi, A., Girouard, A.: Compact manifolds with fixed boundary and large Steklov eigenvalues (2017). arXiv:1701.04125

  10. Dodziuk, J.: Eigenvalues of the Laplacian on forms. Proc. Am. Math. Soc. 85(3), 437–443 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escobar, J.F.: The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal. 150(2), 544–556 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7(2), 321–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girouard, A., Parnovski, L., Polterovich, I., Sher, D.A.: The Steklov spectrum of surfaces: asymptotics and invariants. Math. Proc. Camb. Philos. Soc. 157(3), 379–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hassannezhad, A., Miclo, L.: Higher order Cheeger inequalities for Steklov eigenvalues. Ann. Sci. École Norm. Sup (to appear)

  17. Ilias, S., Makhoul, O.: A Reilly inequality for the first Steklov eigenvalue. Differ. Geom. Appl. 29(5), 699–708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jammes, P.: Une inégalité de Cheeger pour le spectre de Steklov. Ann. Inst. Fourier (Grenoble) 65(3), 1381–1385 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montaño, O.A.: The Stekloff problem for rotationally invariant metrics on the ball. Revista Colombiana de Matemáticas 47(2), 181–190 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Provenzano, L., Stubbe, J.: Weyl-type bounds for Steklov eigenvalues. J. Spectr. Theory (to appear)

  21. Yang, L., Yu, C.: A higher dimensional generalization of Hersch–Payne–Schiffer inequality for Steklov eigenvalues. J. Funct. Anal. 272(10), 4122–4130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank one of the anonymous referees for suggesting an elegant proof to Proposition 1.10. We thank another referee for carefully reading the paper and suggesting several improvements, in particular regarding Theorem 1.11. While a postdoctoral student at the Université de Neuchâtel, KG was supported by the Swiss National Science Foundation Grant No. 200021_163228 entitled Geometric Spectral Theory. KG also acknowledges support from the Max Planck Institute for Mathematics, Bonn. AG acknowledges support from the NSERC Discovery Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Girouard.

Appendix: Surfaces of Revolution with Connected Boundary are Steklov Isospectral

Appendix: Surfaces of Revolution with Connected Boundary are Steklov Isospectral

The goal of this appendix is to prove Proposition 1.10.

Let \(M\subset \mathbb R^3\) be a surface of revolution with connected boundary \(\partial M=\mathbb S^1\subset \mathbb R^2\times \{0\}\) and induced Riemannian metric g. We will construct a smooth function \(\delta :M\rightarrow (0,\infty )\) such that \(\delta \bigl |\bigr ._{\partial M}=1\) and \((M,\delta g)\) is isometric to the Euclidean unit disk \(({\mathbb {D}},g_0)\).

The Riemannian metric on M can be written as \(g=dr^2+h(r)^2d\theta ^2\) on \([0,L)\times \mathbb S^1\), where \(d\theta \) is the usual metric on \(\mathbb S^1\) and, as in Sect. 3.1, the function h satisfies \(h(0)=1\) and \(h(L)=0\). Define the diffeomorphism \(\tau :[0,L)\rightarrow [0,\infty )\) by

$$\begin{aligned} \tau (r)=\int _0^r\frac{1}{h(s)}\,\mathrm{{d}}s. \end{aligned}$$

The map \(\Phi :(0,L)\times \mathbb S^1\rightarrow (0,1)\times \mathbb S^1\) defined by

$$\begin{aligned} \Phi (r,\theta )=(1-e^{-\tau (r)},\theta ) \end{aligned}$$

induces a conformal diffeomorphism to the disk \({\mathbb {D}}\) represented by the metric \(g_0=dr^2+(1-r)^2d\theta ^2\) on \([0,1)\times \mathbb S^1\). In particular, one has \(\Phi ^\star (g_0)=\delta g\), where the conformal factor \(\delta \in C^\infty (M)\) is given by

$$\begin{aligned} \delta (r,\theta )= \left( \frac{\mathrm{{d}}}{\mathrm{{d}}r}\left( 1-e^{-\tau (r)}\right) \right) ^2 =\frac{1}{h^2}e^{-2\tau (r)}. \end{aligned}$$

Moreover \(\delta \bigl |\bigr ._{\partial M}=1\), since \(\delta (0,\theta )=1\). This implies that (Mg) and \((M,\delta g)\cong ({\mathbb {D}},g_0)\) are Steklov isospectral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colbois, B., Girouard, A. & Gittins, K. Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space. J Geom Anal 29, 1811–1834 (2019). https://doi.org/10.1007/s12220-018-0063-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0063-x

Keywords

Mathematics Subject Classification

Navigation