The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1811–1834 | Cite as

Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space

  • Bruno Colbois
  • Alexandre GirouardEmail author
  • Katie Gittins


We obtain upper and lower bounds for Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. A very general upper bound is proved, which depends only on the geometry of the fixed boundary and on the measure of the interior. Sharp lower bounds are given for hypersurfaces of revolution with connected boundary: We prove that each eigenvalue is uniquely minimized by the ball. We also observe that each surface of revolution with connected boundary is Steklov isospectral to the disk.


Steklov problem Euclidean space Prescribed boundary manifolds Hypersurfaces of revolution 

Mathematics Subject Classification

35P15 58C40 



We thank one of the anonymous referees for suggesting an elegant proof to Proposition 1.10. We thank another referee for carefully reading the paper and suggesting several improvements, in particular regarding Theorem 1.11. While a postdoctoral student at the Université de Neuchâtel, KG was supported by the Swiss National Science Foundation Grant No. 200021_163228 entitled Geometric Spectral Theory. KG also acknowledges support from the Max Planck Institute for Mathematics, Bonn. AG acknowledges support from the NSERC Discovery Grants Program.


  1. 1.
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cianci, D., Girouard, A.: Large spectral gaps for Steklov eigenvalues under volume constraints and under localized conformal deformations. Ann. Global Anal. Geom. (to appear)Google Scholar
  3. 3.
    Colbois, B.: The spectrum of the Laplacian: a geometric approach. In: Geometric and Computational Spectral Theory, Volume 700 of Contemporary Mathematics, pp. 1–40. American Mathematical Society, Providence (2017)Google Scholar
  4. 4.
    Colbois, B., Maerten, D.: Eigenvalues estimate for the Neumann problem of a bounded domain. J. Geom. Anal. 18(4), 1022–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Colbois, B., Dryden, E.B., El Soufi, A.: Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds. Bull. Lond. Math. Soc. 42(1), 96–108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261(5), 1384–1399 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the spectrum of a compact hypersurface. J. Reine Angew. Math. 683, 49–65 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Colbois, B., Girouard, A., Raveendran, B.: The Steklov spectrum and coarse discretizations of manifolds with boundary (2016). arXiv:1612.07665 Google Scholar
  9. 9.
    Colbois, B., El Soufi, A., Girouard, A.: Compact manifolds with fixed boundary and large Steklov eigenvalues (2017). arXiv:1701.04125 Google Scholar
  10. 10.
    Dodziuk, J.: Eigenvalues of the Laplacian on forms. Proc. Am. Math. Soc. 85(3), 437–443 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Escobar, J.F.: The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal. 150(2), 544–556 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7(2), 321–359 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Girouard, A., Parnovski, L., Polterovich, I., Sher, D.A.: The Steklov spectrum of surfaces: asymptotics and invariants. Math. Proc. Camb. Philos. Soc. 157(3), 379–389 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hassannezhad, A., Miclo, L.: Higher order Cheeger inequalities for Steklov eigenvalues. Ann. Sci. École Norm. Sup (to appear)Google Scholar
  17. 17.
    Ilias, S., Makhoul, O.: A Reilly inequality for the first Steklov eigenvalue. Differ. Geom. Appl. 29(5), 699–708 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jammes, P.: Une inégalité de Cheeger pour le spectre de Steklov. Ann. Inst. Fourier (Grenoble) 65(3), 1381–1385 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Montaño, O.A.: The Stekloff problem for rotationally invariant metrics on the ball. Revista Colombiana de Matemáticas 47(2), 181–190 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Provenzano, L., Stubbe, J.: Weyl-type bounds for Steklov eigenvalues. J. Spectr. Theory (to appear)Google Scholar
  21. 21.
    Yang, L., Yu, C.: A higher dimensional generalization of Hersch–Payne–Schiffer inequality for Steklov eigenvalues. J. Funct. Anal. 272(10), 4122–4130 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  • Bruno Colbois
    • 1
  • Alexandre Girouard
    • 2
    Email author
  • Katie Gittins
    • 3
  1. 1.Institut de MathématiquesUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.Département de mathématiques et de statistique, Pavillon Alexandre-VachonUniversité LavalQuébecCanada
  3. 3.Max Planck Institute for MathematicsBonnGermany

Personalised recommendations