Skip to main content
Log in

Automorphisms and Deformations of Conformally Kähler, Einstein–Maxwell Metrics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We obtain a structure theorem for the group of holomorphic automorphisms of a conformally Kähler, Einstein–Maxwell metric, extending the classical results of Matsushima (in: Conference board of the mathematical sciences regional, conference series in mathematics, no. 7, American Mathematical Society, Providence, 1971), Licherowicz (Géométrie des groupes de transformation, Dunod, 1958), and Calabi (Extremal Kähler metrics, seminar on differential geometry, Princeton University Press, Princeton, 1982) in the Kähler–Einstein, cscK, and extremal Kähler cases. Combined with previous results of LeBrun (Commun Math Phys 344:621–653, 2016), Apostolov–Maschler (Conformally Kähler, Einstein–Maxwell geometry, arXiv:1512.06391v1) and Futaki–Ono (Volume minimization and conformally Kähler, Einstein–Maxwell geometry, arXiv:1706.07953), this completes the classification of the conformally Kähler, Einstein–Maxwell metrics on \(\mathbb {{CP}}^1 \times \mathbb {{CP}}^1\). We also use our result in order to introduce a (relative) Mabuchi energy in the more general context of (Kqa)-extremal Kähler metrics in a given Kähler class, and show that the existence of (Kqa)-extremal Kähler metrics is stable under small deformation of the Kähler class, the Killing vector field K and the normalization constant a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Ambitoric geometry I: Einstein metrics and extremal ambikähler structures. J. Reine Angew. Math. 721, 109–147 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Apostolov, V., Calderbank, D.M.J., Legendre, E., Gauduchon, P.: Levi-Kähler reduction of CR structures, products of spheres, and toric geometry (in preparation)

  3. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.: Extremal Kähler metrics on ruled manifolds and stability. Géométrie différentielle, physique mathématique, mathématiques et société (II). Astérisque 322, 93–150 (2008)

    MATH  Google Scholar 

  4. Apostolov, V., Maschler, G.: Conformally Kähler, Einstein–Maxwell geometry. arXiv:1512.06391v1 (to appear in JEMS)

  5. Besse, A.L.: Einstein Manifolds, Ergebnisse (3), vol. 10. Springer, Berlin (1987)

    Book  Google Scholar 

  6. Calabi, E.: Extremal Kähler Metrics, Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton, NJ (1982)

  7. Donaldson, S.K.: Remarks on Gauge Theory, Complex Geometry and 4-Manifold Topology, Fields Medallists 17 Lectures. World Scientific Series in 20th Century Mathematics, vol. 5, pp. 384–403. World Scientific Publishing, River Edge, NJ (1997)

  8. Fujiki, A.: Moduli space of polarized algebraic manifolds and Kähler metrics [translation of Sugaku 42, no. 3 (1990), 231–243]. Sugaku Expos. 5(2), 173–191 (1992)

  9. Fujiki, A., Schumacher, G.: The moduli space of extremal compact Kähler manifolds and generalized Weil–Petersson metrics. Publ. Res. Inst. Math. Sci. 26, 101–183 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73, 437–443 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Futaki, A.: On compact Kähler manifolds of constant scalar curvature. Proc. Jpn. Acad. Ser. A 59, 401–402 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Futaki, A., Ono, H.: Volume minimization and Conformally Kähler, Einstein–Maxwell geometry. arXiv:1706.07953

  13. Futaki, A., Ono, H.: Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group. arXiv:1708.01958

  14. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83, 585–635 (2009)

    Article  MATH  Google Scholar 

  15. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267(4), 495–518 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gauduchon, P.: Calabi’s Extremal Metrics: An Elementary Introduction. Lecture Notes

  17. Koca, C., Tønnesen-Friedman, C.W.: Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces. Ann. Glob. Anal. Geom. 50, 29–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. LeBrun, C.: The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry. J. Geom. Phys. 91, 163–171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. LeBrun, C.: The Einstein–Maxwell equations and conformally Kähler geometry. Commun. Math. Phys. 344, 621–653 (2016)

    Article  MATH  Google Scholar 

  20. Lichnerowicz, A.: Géométrie des groupes de transformation, Travaux et Recherches Mathématiques 3, Dunod (1958)

  21. LeBrun, C.R., Simanca, S.: On the Kähler classes of extremal metrics. In: Geometry and Global Analysis, Sendai, 1993. Tohoku University, Sendai, 255–271 (1993)

  22. Legendre, E.: Toric geometry of convex quadrilaterals. J. Symplectic Geom. 9, 343–385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lejmi, M., Upmeier, M.: Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry. arXiv:1703.01323

  24. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki–Einstein manifolds and volume minimisation. Commun. Math. Phys. 280, 611–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsushima, Y.: Holomorphic vector fields on compact Kähler manifolds. In: Conference Board of the Mathematical Sciences Regional. Conference Series in Mathematics, No. 7. American Mathematical Society, Providence, RI (1971)

  26. Plebański, J.F., Demiański, M.: Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. 98, 98–127 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my thesis supervisor Vestislav Apostolov for his invaluable advice and for sharing his insights with me. I am also grateful to Professors A. Futaki and H. Ono who kindly inform me that they have obtained independently a proof of Theorem 1 in [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Lahdili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahdili, A. Automorphisms and Deformations of Conformally Kähler, Einstein–Maxwell Metrics. J Geom Anal 29, 542–568 (2019). https://doi.org/10.1007/s12220-018-0010-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0010-x

Keywords

Mathematics Subject Classification

Navigation