Skip to main content
Log in

The Einstein–Maxwell Equations and Conformally Kähler Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Page’s Einstein metric on \({{\mathbb{CP}}_2\#\overline{\mathbb{CP}}_2}\) is conformally related to an extremal Kähler metric. Here we construct a family of conformally Kähler solutions of the Einstein–Maxwell equations that deforms the Page metric, while sweeping out the entire Kähler cone of \({{\mathbb{CP}}_2\#\overline{\mathbb{CP}}_2}\). The same method also yields analogous solutions on every Hirzebruch surface. This allows us to display infinitely many geometrically distinct families of solutions of the Einstein–Maxwell equations on the smooth 4-manifolds \({S^2 \times S^2}\) and \({{\mathbb{CP}}_2\#\overline{\mathbb{CP}}_2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolov, V., Calderbank, D., Gauduchon, P.: Ambitoric geometry I: Einstein metrics and extremal ambikahler structures. J. Reine Angew. Math. (2015) (to appear). doi:10.1515/crelle-2014-0060

  2. Arezzo C., Pacard F.: Blowing up Kähler manifolds with constant scalar curvature. II. Ann. Math. (2) 170, 685–738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronszajn N., Krzywicki A., Szarski J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4(1962), 417–453 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4. Springer, Berlin (1984)

  5. Berger M., Ebin D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Differ. Geom. 3, 379–392 (1969)

    MathSciNet  MATH  Google Scholar 

  6. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10. Springer, Berlin (1987)

  7. Bott R.: Nondegenerate critical manifolds. Ann. Math. (2) 60, 248–261 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)

  9. Calabi, E.: Extremal Kähler metrics. II. In: Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)

  10. Chen X.X.: The space of Kähler metrics. J. Differ. Geom. 56, 189–234 (2000)

    MATH  Google Scholar 

  11. Chen X.X., LeBrun C., Weber B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21, 1137–1168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 49, 405–433 (1983)

    MATH  Google Scholar 

  13. Donaldson S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59, 479–522 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Donaldson S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Duistermaat J.J., Heckman G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259–268 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Eguchi T., Hanson A.J.: Self-dual solutions to Euclidean gravity. Ann. Phys. 120, 82–106 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Grove K., Ziller W.: Cohomogeneity one manifolds with positive Ricci curvature. Invent. Math. 149, 619–646 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gursky, M., LeBrun, C.: Yamabe invariants and spinc structures. Geom. Funct. Anal. 8, 965–977 (1998)

  19. Kim J., LeBrun C., Pontecorvo M.: Scalar-flat Kähler surfaces of all genera. J. Reine Angew. Math. 486, 69–95 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Kobayashi S.: Fixed points of isometries. Nagoya Math. J. 13, 63–68 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Koiso N.: Rigidity and stability of Einstein metrics—the case of compact symmetric spaces. Osaka J. Math. 17, 51–73 (1980)

    MathSciNet  MATH  Google Scholar 

  22. LeBrun C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591–596 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. LeBrun C.: Explicit self-dual metrics on \({{\mathbb{CP}}_{2}\# \cdots \#{\mathbb{CP}}_{2}}\) . J. Differ. Geom. 34, 223–253 (1991)

    MathSciNet  MATH  Google Scholar 

  24. LeBrun C.: Four-manifolds without Einstein metrics. Math. Res. Lett. 3, 133–147 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. LeBrun, C.: Einstein metrics on complex surfaces. In: Geometry and Physics (Aarhus, 1995). Lecture Notes in Pure and Applied Mathematics, vol. 184, pp. 167–176. Dekker, New York (1997)

  26. LeBrun, C.: The Einstein–Maxwell equations, extremal Kähler metrics, and Seiberg–Witten theory. In: The Many Facets of Geometry, pp. 17–33. Oxford University Press, Oxford (2010)

  27. LeBrun C.: On Einstein, Hermitian 4-manifolds. J. Differ. Geom. 90, 277–302 (2012)

    MathSciNet  MATH  Google Scholar 

  28. LeBrun, C.: Calabi energies of extremal toric surfaces. In: Surveys in Differential Geometry. Geometry and Topology. Surveys in Differential Geometry, vol. 18, pp. 195–226. International Press, Somerville (2013)

  29. LeBrun C.: The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry. J. Geom. Phys. 91, 163–171 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. LeBrun C., Simanca S.R.: Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4, 298–336 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lerman E.: Symplectic cuts. Math. Res. Lett. 2, 247–258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morrey, Jr.: Multiple Integrals in the Calculus of Variations. Springer, New York (1966)

  33. Newlander A., Nirenberg L.: Complex analytic coordinates in almost complex manifolds (2). Ann. Math. 65, 391–404 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Page D.: A compact rotating gravitational instanton. Phys. Lett. 79, 235–238 (1978)

    Article  Google Scholar 

  35. Shu Y.: Compact complex surfaces and constant scalar curvature Kähler metrics. Geom. Dedicata 138, 151–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude LeBrun.

Additional information

Communicated by N. A. Nekrasov

C. LeBrun’s research was funded in part by NSF Grant DMS-1510094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBrun, C. The Einstein–Maxwell Equations and Conformally Kähler Geometry. Commun. Math. Phys. 344, 621–653 (2016). https://doi.org/10.1007/s00220-015-2568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2568-5

Keywords

Navigation