Skip to main content
Log in

Regularity Scales and Convergence of the Calabi Flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

A Correction to this article was published on 26 July 2018

This article has been updated

Abstract

We define regularity scales to study the behavior of the Calabi flow. Based on estimates of the regularity scales, we obtain convergence theorems of the Calabi flow on extremal Kähler surfaces, under the assumption of global existence of the Calabi flow solutions. Our results partially confirm Donaldson’s conjectural picture for the Calabi flow in complex dimension 2. Similar results hold in high dimension with an extra assumption that the scalar curvature is uniformly bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 26 July 2018

    The authors would like to acknowledge additional funding. Corrected acknowledgments appear here.

  • 26 July 2018

    The authors would like to acknowledge additional funding. Corrected acknowledgments appear here.

  • 26 July 2018

    The authors would like to acknowledge additional funding. Corrected acknowledgments appear here.

  • 26 July 2018

    The authors would like to acknowledge additional funding. Corrected acknowledgments appear here.

  • 26 July 2018

    The authors would like to acknowledge additional funding. Corrected acknowledgments appear here.

References

  1. Anderson, M.T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, M.T., Cheeger, J.: \(C^{\alpha }\)-compactness for manifolds with Ricci curvature and injectivity radius bounded below. J. Differ. Geom. 35(2), 265–281 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, R.: A thermodynamical formalism for Monge-Ampre equations, Moser-Trudinger inequalities and Kähler Einstein metrics. Adv. Math. 248, 1254–1297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, R., Berndtsson, B.: Convexity of the \(K\)-energy on the space of Kähler metrics and uniqueness of extremal metrics. arXiv:1405.0401

  5. Calabi, E.: Extremal Kähler metrics, Seminar on Differential Geometry. Ann. of Math. Stud., vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)

  6. Calabi, E.: Extremal Kähler Metrics. II. Differential Geometry and Complex Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  7. Calabi, E., Chen, X.X.: The space of Kähler metrics.II. J. Differ. Geom. 61(2), 173–193 (2002)

    Article  MATH  Google Scholar 

  8. Calabi, E., Hartman, P.: On the smoothness of isometries. Duke Math. J. 37, 741–750 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, H.D.: Deformation of Kähler metrics to Kähler Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chau, A., Tam, L.F.: On the complex structure of Kähler manifolds with nonnegative curvature. J. Differ. Geom. 73(3), 491–530 (2006)

    Article  MATH  Google Scholar 

  11. Chen, X.X.: Space of Kähler metrics. J. Differ. Geom. 56, 189–234 (2000)

    Article  MATH  Google Scholar 

  12. Chen, X.X.: Calabi flow in Riemann surfaces revisited: a new point of view. Int. Math. Res. Not. 6, 275–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X.X.: Private communication

  14. Chen, X.X.: Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175(3), 453–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X.X., He, W.Y.: On the Calabi flow. Am. J. Math. 130(2), 539–570 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, X.X., He, W.Y.: The Calabi flow on toric Fano surfaces. Math. Res. Lett. 17(2), 231–241 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X.X., He, W.Y.: The Calabi flow on Kähler surfaces with bounded Sobolev constant (I). Math. Ann. 354(1), 227–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, X.X., Lebrun, C., Weber, B.: On conformally Kähler Einstein manifolds. J. Am. Math. Soc. 21(4), 1137–1168 (2008)

    Article  MATH  Google Scholar 

  19. Chen, X.X., Li, L., Paun, M.: Approximation of weak geodesics and subharmonicity of Mabuchi energy. arXiv:1409.7896

  20. Chen, X.X., Sun, S.: Calabi flow, Geodesic rays, and uniqueness of constant scalar curvature Kähler metrics. Ann. Math. 180, 407–454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, X.X., Tian, G.: Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Études Sci., No. 107, pp. 1–107 (2008)

  22. Chen, X.X., Wang, B.: On the conditions to extend Ricci flow (III). Int. Math. Res. Not., No. 10, pp. 2349–2367 (2013)

  23. Chen, X.X., Wang, B.: Space of Ricci flows (I). Commun. Pure Appl. Math. 65(10), 1399–1457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, X.X., Wang, B.: Space of Ricci flows (II). arXiv: 1405.6797

  25. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence, RI (2006)

    MATH  Google Scholar 

  26. Chruciel, P.T.: Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137, 289–313 (1991)

    Article  MathSciNet  Google Scholar 

  27. Collins, T.C., Székelyhidi, G.: The twisted Kähler Ricci flow. arXiv: 1207.5441

  28. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northen California Symplectic Geometry Seminar. Amer. Math. Soc. Transl. Ser. No. 2 vol. 196, pp. 13–33. Am. Math. Soc., Providence, RI (1999)

  29. Donaldson, S.K.: Stability, birational transformations, and the Kähler-Einstein problem. Surveys in Differential Geometry, vol. 17. International Press (2012)

  30. Donaldson, S.K.: Conjectures in Kähler geometry. Strings and Geometry, Clay Math. Proc., vol. 3, pp. 71–78. Amer. Math. Soc., Providence, RI (2004)

  31. Donaldson, S.K.: Private communication

  32. Fine, J.: Calabi flow and projective embeddings. With an appendix by Kefeng Liu and Xiaonan Ma. J. Differ. Geom. 84(3), 489–523 (2010)

    Article  Google Scholar 

  33. Fujiki, A.: Moduli space of polarized algebraic manifolds and Kähler metrics. [trans. of Sugaku 42(1990), no. 3, 231-243; MR 1073369], Sugaku Exposition 5, 173–191 (1992)

  34. Glickenstein, D.: Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates. Geom. Topol. 7, 487–510 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. He, W.Y.: On the convergence of the Calabi flow. arXiv:1303.3056

  37. Huang, H.N., Feng, R.J.: The Gbloal Existence and Convergence of the Calabi flow on \({\mathbb{C}}^{n}/ {\mathbb{Z}}_{n+i}{\mathbb{Z}}_{N}\)

  38. Huang, H.N., Zheng, K.: Stability of the Calabi flow near an extremal metric. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(1), 167–175 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Li, H.Z., Zheng, K.: Kähler non-collapsing, eigenvalues and the Calabi flow. J. Funct. Anal. 267(5), 1593–1636 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds. I. Osaka J. Math. 24(2), 227–252 (1987)

    MathSciNet  MATH  Google Scholar 

  41. Semmes, S.: Complex monge-ampere and symplectic manifolds. Am. J. Math. 114, 495–550 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sesum, N.: Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sesum, N., Tian, G.: Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman) and some applications. J. Inst. Math. Jussieu 7(3), 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Streets, J.: Long time existence of minimizing movement solutions of Calabi flow. Adv. Math. 259, 688–729 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Streets, J.: The consistency and convergence of \(K\)-energy minimizing movements. arXiv:1301.3948 (to appear)

  46. Streets, J.: The long time behavior of fourth order curvature flows. Calc. Var. Partial Differ. Equ. 46(1–2), 39–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Struwe, M.: Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 247–274 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Székelyhidi, G.: The Calabi functional on a ruled surface. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 837–856 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian, G., Yau, S.T.: Complete Kähler manifolds with zero Ricci curvature. I. J. Am. Math. Soc. 3(3), 579–609 (1990)

    MATH  Google Scholar 

  50. Tian, G., Zhang, Z.L.: Regularity of Kähler Ricci flows on Fano manifolds. arXiv:1310.5897

  51. Tian, G., Zhu, X.H.: Convergence of Kähler Ricci flow. J. Am. Math. Soc. 20, 675–699 (2007)

    Article  MATH  Google Scholar 

  52. Tian, G., Zhu, X.H.: Convergence of Kähler-Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Wang, B.: On the conditions to extend Ricci flow (II). Int. Math. Res. Not. 14, 3192–3223 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Xiuxiong Chen, Simon Donaldson, Weiyong He, Claude LeBrun and Song Sun for insightful discussions. Haozhao Li and Kai Zheng would like to express their deepest gratitude to Professor Weiyue Ding for his support, guidance and encouragement during the project. Part of this work was done while Haozhao Li was visiting MIT and he wishes to thank MIT for their generous hospitality. H. Li: Supported by NSFC Grant No. 11671370. B. Wang: Supported by NSF Grant DMS-1312836. K. Zheng: Supported by the EPSRC on a Programme Grant entitled “Singularities of Geometric Partial Differential Equations” Reference Number EP/K00865X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wang.

Additional information

In memory of Professor Weiyue Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, B. & Zheng, K. Regularity Scales and Convergence of the Calabi Flow. J Geom Anal 28, 2050–2101 (2018). https://doi.org/10.1007/s12220-017-9896-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9896-y

Keywords

Mathematics Subject Classification

Navigation