Skip to main content
Log in

The Raising Steps Method: Applications to the \(\bar{\partial }\) Equation in Stein Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In order to have estimates on the solutions of the equation \(\bar{\partial }u=\omega \) on a Stein manifold, we introduce a new method, the “raising steps method”, to get global results from local ones. In particular, it allows us to transfer results from open sets in \({\mathbb {C}}^{n}\) to open sets in a Stein manifold. Using it, we get \(\displaystyle L^{r}-L^{s}\) results for solutions of the equation \(\bar{\partial }u=\omega \) with a gain, \(\displaystyle s>r\), in strictly pseudo convex domains in Stein manifolds. We also get \(\displaystyle L^{r}-L^{s}\) results for domains in \({\mathbb {C}}^{n}\) locally biholomorphic to convex domains of finite type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amar, E.: Cohomologie complexe et applications. J. Lond. Math. Soc. 2(29), 127–140 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amar, E.: Estimates \({L}^{r}-{L}^{s}\) for solutions of the \(\bar{\partial }\) equation in strictly pseudo convex domains in \({{C}}^{n}\). HAL : hal-00922356 (2013)

  3. Amar, E., Bonami, A.: Mesure de Carleson d’ordre \(\alpha \) et solution au bord de l’équation \(\bar{\partial }\). Bull. Soc. Math. France 107, 23–48 (1979)

    MathSciNet  MATH  Google Scholar 

  4. Amar, E.: An Andreotti-Grauert theorem with \({L}^r\) estimates. arXiv:1203.0759v5 (2012)

  5. Beals, R., Greiner, P., Stanton, N.: \(l^ p\) and Lipschitz estimates for the \(\bar{\partial }\)-equation and the \(\bar{\partial }\)-Neumann problem. Math. Ann. 277, 185–196 (1987). 277, 185–196 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces, vol. 223. Grundlehren der mathematischen Wissenchaften (1976)

  7. Chang, D.-C.: Optimal \({L}^p\) and Hölder estimates for the Kohn solution of the \(\overline{\partial }\)-equation on strongly pseudoconvex domains. Trans. Am. Math. Soc. 315(1), 273–304 (1989)

    MATH  Google Scholar 

  8. Cumenge, A.: Sharp estimates for \(\bar{\partial }\) on convex domains of finite type. Ark. Mat. 39(1), 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demailly, J.-P., Laurent-Thiébaut, C.: Formules intégrales pour les formes différentielles de type \((p, q)\) dans les variétés de Stein. Ann. Sci. Ecole Norm. Sup. 4(4), 579–598 (1987)

    MATH  Google Scholar 

  10. Diederich, K., Fischer, B., Fornaess, J.-E.: Hölder estimates on convex domains of finite type. Math. Z. 232(1), 43–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fischer, B.: \({L}^p\) estimates on convex domains of finite type. Mathematische Zeitschrift 236(2), 401–418 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy-Riemann complex., volume 75 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J. (1972)

    MATH  Google Scholar 

  13. Henkin, G., Leiterer, J.: Theory of Functions on Complex Manifolds. Mathematische Monographien. Akademie-Verlag, Berlin (1984)

    Google Scholar 

  14. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. American Elsevier, North-Holland (1994)

    MATH  Google Scholar 

  15. Kerzman, N.: Hölder and \(L^p\) estimates for solutions of \(\bar{\partial }u=f\) in strongly pseudoconvex domains. Commun. Pure. Appl. Math. 24, 301–379 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krantz, S.: Optimal Lipschitz and \({L}^{p}\) regularity for the equation \(\overline{\partial }u=f\) on strongly pseudo-convex domains. Math. Ann. 219(3), 233–260 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krantz, S.: Function Theory of Several Complex Variables. Wadsworth, Belmont (2001)

    MATH  Google Scholar 

  18. Lieb, I., Michel, J.: The Cauchy–Riemann Complex. Volume 34 of Aspects of Mathematics, E34. Friedr. Vieweg Sohn (2002)

  19. Ma, L., Vassiliadou, S.: \({L}^p\) estimates for Cauchy–Riemann operator on q-convex intersections in \(\mathbb{C}^n\). Manuscr. Math 103, 413–433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ovrelid, N.: Integral representation formulas and \(L^p\) estimates for the \(\bar{\partial }\) equation. Math. Scand. 29, 137–160 (1971)

    MathSciNet  MATH  Google Scholar 

  21. Michael Range, R.: Holomorphic Functions and Integral Representations in Several Complex Variables. Volume 108 of Graduate Texts in Mathematics. Springer, New York (1986)

    Book  Google Scholar 

  22. Serre, J.-P.: Un théorème de dualité. Comment. Math. Helv. 29, 9–26 (1955)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Amar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, E. The Raising Steps Method: Applications to the \(\bar{\partial }\) Equation in Stein Manifolds. J Geom Anal 26, 898–913 (2016). https://doi.org/10.1007/s12220-015-9576-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9576-8

Keywords

Mathematics Subject Classification

Navigation