Skip to main content
Log in

Spectral invariants of the perturbed polyharmonic Steklov problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For a given bounded domain \(\Omega \) with smooth boundary in a smooth Riemannian manifold \(({\mathcal {M}},g)\), we establish a procedure to calculate all the coefficients of the asymptotic expansion for the heat kernel trace of the Dirichlet-to-Neumann map \(\Lambda _m\) (\(m\ge 1\)) associated with perturbed polyharmonic operator as \(t\rightarrow 0^+\). We also explicitly calculate the first four coefficients of this asymptotic expansion. These coefficients (i.e., heat invariants) provide precise information for the area and curvatures of the boundary \(\partial \Omega \) in terms of the spectrum of the perturbed polyharmonic Steklov problem. In particular, when \(m=1\) and \(q\equiv 0\) our work recovers the previous corresponding results in Liu (J Differ Equ 259, 2499–2545, 2015) and Polterovich and Sher (J Geom Anal 25: 924–950, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal. (1–3) 27, 153–172 (1988)

    Article  MathSciNet  Google Scholar 

  2. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s Law: Spectral properties of the Laplacian in mathematics and physics. Mathematical Analysis of Evolution, Information, and Complexity. Edited by Wolfgang Arendt and Wolfgang P. Schleich, WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim (2009)

  3. Ashbaugh, M. S.: On universal inequalities for the low eigenvalues of the buckling problem. In: Partial differential equations and inverse problems, volume 362 of Contemp. Math., pp. 13-31. American Mathematical Society, Providence, RI (2004)

  4. Ashbaugh, M.S., Gesztesy, F., Mitrea, M., Teschl, G.: Spectral theory for perturbed Krein Laplacians in nonsmooth domains. Adv. Math. 223, 1372–1467 (2010)

    Article  MathSciNet  Google Scholar 

  5. Astala, K., Päivärinta, L.: Calderón‘s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)

    Article  MathSciNet  Google Scholar 

  6. Avramidi, I. G.: Non-Laplace type operators on manifolds with boundary, analysis, geometry and topology of elliptic operators, pp. 107–140. World Scienific Publications, Hackensack (2006)

  7. Bailey, P.B., Brownell, F.H.: Removal of the log factor in the asymptotic estimates of polyhedral membrane eigenvalues. J. Math. Anal. Appl. 4, 212–239 (1962)

    Article  MathSciNet  Google Scholar 

  8. Bandle, C.: Isoperimetric inequalities and applications. In: Monographs and Studies in Mathematics, vol. 7. Pitman (Advanced Publishing Program), Boston, Mass. (1980)

  9. van den Berg, M.: On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian. J. Funct. Anal. 71, 279–293 (1987)

    Article  MathSciNet  Google Scholar 

  10. Bernasconi, F., Graf, G.M., Hasler, D.: The heat kernel expansion for the electromagnetic field in a cavity. Ann. Henri Poincaré 4, 1001–1013 (2003)

    Article  MathSciNet  Google Scholar 

  11. Bhattacharyya, S., Ghosh, T.: Inverse boundary value problem of determining up to a second order tensor appear in the lower order perturbation of a polyharmonic operator. J. Fourier Anal. Appl. 25, 661–683 (2019)

    Article  MathSciNet  Google Scholar 

  12. Brown, R. M.: Global uniqueness in the impedance-imaging problem for less regular conductivities. SIAM J. Math. Anal., 27(4), 1049–1056 (1996)

  13. Calderón, A. P.: On an inverse boundary value problem. In: Seminar in Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, pp. 65–73 (1980)

  14. Chanillo, S.: A problem in electrical prospection and ann-dimensional Borg-Levinson theorem. Proc. Am. Math. Soc., 108(3), 761–767 (1990)

  15. Chavel, I.: Eigenvalues in Riemannian geometry, Academic Press (1984)

  16. Chow, B., Lu, P., Ni, L.: Hamilton‘s Ricci flow. Science Press, Beijing, American Mathematical Society, Providence, RI (2006)

  17. Clark, C.: The asymptotic distributions of eigenvalues and eigenfunctions for elliptic boundary value problems. SIAM Rev. 9, 627–646 (1967)

    Article  MathSciNet  Google Scholar 

  18. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. 1. Interscience publishers, New York (1953)

  19. Courant, R.: über die eigenwerte bei der Differentialgleichungen der Mathematischen Physik. Math. Z. 7, 1–57 (1920)

    Article  MathSciNet  Google Scholar 

  20. Datchev, K., Hezari, H.: Inverse problems in spectral geometry. arXiv: 1108.5755 [math.SP] (2011)

  21. Edward, J., Wu, S.: Determinant of the Neumann operator on smooth Jordan curves. Proc. Am. Math. Soc. 111(2), 357–363 (1991)

    Article  MathSciNet  Google Scholar 

  22. Fox,D.W., Kuttler, J.R.: Sloshing frequencies. Z. Angew. Math. Phys., 34, 668–696 (1983)

  23. Dos Santos Ferreira, D., Kenig, C., Salo, M., Uhlmann, G.: Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178(1), 119–171 (2009)

  24. Fraser, A., Schoen, R.: The first Steklov eigenvalues, conformal geometry and minimal surfaces. Adv. Math. 226, 4011–4030 (2011)

    Article  MathSciNet  Google Scholar 

  25. Fulling, S. A.: editor, Heat Kernel Techniques and Quantum Gravity, Winnipeg, Canada 1994, published as vol. 4 of Discourses in Mathematics and Its Applications. Dept. of Math., Texas A & M University, College Station, TX (1995)

  26. Gazzola, F., Grunau,E.-C., . Sweers, G : Polyharmonic boundary value problems, volume 1991 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010). Positivity preserving and nonlinear higher order elliptic equations in bounded domains

  27. Gilkey, P.B.: The spectral geometry of a Riemannian manifold. J. Diff. Geometry 10, 601–618 (1975)

    MathSciNet  MATH  Google Scholar 

  28. Gilkey, P., Grubb, G.: Logarithmic terms in asymptotic expansions of heat operator traces. Comm. in PDE 23(5–6), 777–792 (1998)

  29. Greenleaf, A., Lassas, M., Uhlmann, G.: The Calderón problem for conormal potentials, I. Global uniqueness and reconstruction. Comm. Pure Appl. Math. 56(3), 328–352 (2003)

  30. Grubb, G.: Functional Calculus of Pseudo-Differential Boundary Problems. Birkhäuser, Boston (1986)

    Book  Google Scholar 

  31. Grubb, G.: Distributions and operators, Graduate Texts in Mathematics, vol. 252. Springer, New York (2009)

  32. Hörmander, L.: The Analysis of Partial Differential Operators III. Springer-Verlag, New York (1985)

    MATH  Google Scholar 

  33. Hörmander, L.: The The Analysis of Partial Differential Operators IV. Springer-Verlag, New York (1985)

    MATH  Google Scholar 

  34. Isaacson, D., Mueller,J., Siltanen, S.: (eds), Biomedical applications of electrical impedance tomography Physiol. Meas., 24, 391–638 (2003)

  35. Ivrii, Ya. V: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on Manifolds with boundary, Funkts. Anal. Prilozh, 14(2), 25–34. English transl.: Funct. Anal. Appl., 14, 98–106 (1980)

  36. M. Kac,: Can one hear the shape of a drum?, Amer. Math. Monthly (Slaught Mem. Papers, no. 11), 73(4), 1–23 (1966)

  37. Kopachevsky, N. D., Krein, S.G.: Operator approach to linear problems of hydrodynamics. Vol. 1, Oper. Theory Adv. Appl., vol. 128, Birkhäuser Verlag, Basel (2001)

  38. Korevaa, J.: Tauberian Theory: A Century of Developments. Springer-Verlag, Heidelberg (2004)

    Book  Google Scholar 

  39. Krupchyk, K., äivärinta, L.: A Borg-Levinson theorem for higher order elliptic operators, Int. Math. Res. Not. 2012, no. 6, 1321–1351

  40. Krupchyk, K., Lassas, M., Uhlmann, G.: Determining a first order perturbation of the biharmonic operator by partial boundary measurements, J. Funct. Anal., 26(4), 1781–1801 (2012)

  41. Krupchyk, K., Lassas, M., Uhlmann, G.: Inverse boundary value problems for the perturbed polyharmonic operator, Trans. Amer. Math. Soc., 366(1), 95–112 (2014)

  42. Lapidus, M. L., Fleckinger-Pelle, J.: Tambour fractale. vers une resolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacien, C. R. Acad. Sei. Paris Ser. I, 306, 171–175 (1988)

  43. Lee, J., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. CPAM 42, 1097–1112 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin (1972)

    Book  Google Scholar 

  45. Liu, G.Q.: The Weyl-type asymptotic formula for biharmonic Steklov eigenvalues on Riemannian manifolds. Adv. Math. 228, 2162–2217 (2011)

    Article  MathSciNet  Google Scholar 

  46. Liu, G.Q.: Asymptotic expansion of the trace of the heat kernel associated to the Dirichlet-to-Neumann operator. J. Differ. Equ. 259, 2499–2545 (2015)

    Article  MathSciNet  Google Scholar 

  47. Liu, G.Q.: The geometric invariants for the spectrum of the Stokes operator. Math. Ann. 382 (3–4),1985–2032 (2022). https://doi.org/10.1007/s00208-021-02167-w

  48. Liu, G.Q.: Geometric Invariants of Spectrum of the Navier-Lamé Operator, Journal of Geometric Analysis 31(10), 10164–10193 (2021)

  49. Liu, G.Q.: On asymptotic properties of biharmonic Steklov eigenvalues. J. Diff. Equ. 261(9), 4729–4757 (2016)

    Article  MathSciNet  Google Scholar 

  50. Liu,G.Q., Tan, X. M.: Spectral invariants of the magnetic Dirichlet-to-Neumann map on Riemannian manifolds. arXiv:2108.07611

  51. Liu, G.Q.: Heat invariants of the perturbed polyharmonic Steklov problem. arXiv:1405.3350

  52. Lorentz, G.G.: Beweis des Gausschen Intergralsatzes. Math. Z. 51, 61–81 (1949)

    Article  Google Scholar 

  53. Lee, J.M., Uhlmann, G.: Determing anisotropic real-analytic conductivities by boundary measurements. Comm. Pure Appl. Math. 42, 1097–1112 (1989)

    Article  MathSciNet  Google Scholar 

  54. McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geometry 1, 43–69 (1967)

    MathSciNet  MATH  Google Scholar 

  55. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  56. Novokov, R. G.: A multidimensional inverse spectral problem for the equation \(-\Delta \phi +(v(x) -Eu(x)) \psi =0\), Funksional Annal. i Prilozhen 22(4), 11–22 (1988). Translation in Func. Anal. Appl., 22, 263–272 (1988)

  57. Payne, L.E.: Isoperimetric inequalities and their applications. SIAM Rev. 9(3), 453–488 (1967)

    Article  MathSciNet  Google Scholar 

  58. Pleijel, Å.: A study of certain Green‘s functions with applications in the theory of vibrating membranes. Ark. Mat. 2, 553–569 (1954)

    Article  MathSciNet  Google Scholar 

  59. Polterovich, I., Sher, D.A.: Heat invariants of the Steklov problem. J. Geom. Anal. 25, 924–950 (2015)

    Article  MathSciNet  Google Scholar 

  60. Safarov, Yu., Vassiliev, D.: The asymptotic distribution of eigenvalues of partial differential operators. Am. Math. Soc. (1997)

  61. Sandgren, L.: A vibration problem. Meddelanden frÅn Lunds Universitets Matematiska Seminarium 13, 1–83 (1955)

    MathSciNet  MATH  Google Scholar 

  62. Sarnak, P.: Spectra of hyperbolic surfaces. Bull. Amer. Math. Soc. 40(4), 441–478 (2003)

  63. Seeley, R.: Complex powers of an elliptic operator. Proc. Symp. Pure Math. 10, 288–307 (1967)

    Article  MathSciNet  Google Scholar 

  64. Steklov, W.: [V. A. Steklov], Sur les problèmes fondamentaux de la physique mathématique, Ann. Sci. École Norm. Sup., 19, 455–490 (1902)

  65. Sylvester, J., Uhlmaun, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MathSciNet  Google Scholar 

  66. Sylvester,J., Uhlmann, G.: The Dirichlet to Neumann map and applications. In: Inverse problems in partial differential equations, Edited by David Colton. The Society for Industrial and Applications (1990)

  67. Taylor, M. E.: Partial Differential Equations II, Appl. Math. Sci. 116, Springer-Verlag, New York (1996)

  68. Weyl, H.: Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. J. Reine Angew. Math. 141, 1–11 (1912)

    MathSciNet  MATH  Google Scholar 

  69. Weyl, H.: Des asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I wish to express my sincere gratitude to Professor L. Nirenberg and Professor Fang-Hua Lin for their great support and help. I would like to thank the Editor and an anonymous referee for many valuable comments and suggestions. This research was supported by NNSF of China (11671033/A010802) and NNSF of China (11171023/A010801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genqian Liu.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G. Spectral invariants of the perturbed polyharmonic Steklov problem. Calc. Var. 61, 125 (2022). https://doi.org/10.1007/s00526-022-02183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02183-x

Mathematics Subject Classification

Navigation