Skip to main content

Advertisement

Log in

Optimization Analysis of Microgravity Experimental Facility for the Deployable Structures Based on Force Balance Method

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Ground-based microgravity experiment facility for large deployable structures based on the force balance was used in deployment function experiments and profile precision estimations. Considering how to exert the balance force in an accurate and efficient way to reduce its adverse effects and improve the realism of the simulated space environment. In this paper, a deformation displacement model of deployable structures under the effects of balance forces and gravity was established based on the finite element theory. The effects of the number, and the distribution form, of balance forces on deformation displacement of deployable structures were examined, and the optimal values of balance forces were derived using the genetic algorithm. The results shows that the effectiveness of the ground-based microgravity experiment facility for large deployable structures can be significantly improved by appropriately selecting the number and the distribution form of balance forces, and optimizing the values of balance forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agrawal, S.K., Hirzinger, G., Landzettel, K., Schwertassek, R.: A new laboratory simulator for study of motion of free-floating robots relative to space targets. IEEE Trans. Robot. Autom. 12(4), 627–633 (1996)

    Article  Google Scholar 

  • Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Watertown (2006)

    MATH  Google Scholar 

  • Beuchler, S., Schöberl, J.: New shape functions for triangularp-FEM using integrated Jacobi polynomials. Numer. Math. 103(3), 339–366 (2006)

    Article  MathSciNet  Google Scholar 

  • Dubowsky, S., Durfee, W., Corrigan, T., et al.: A laboratory test bed for space robotics: the VES II[C]// Intelligent Robots and Systems ‘94. Advanced Robotic Systems and the Real World, IROS ‘94. Proceedings of the IEEE/RSJ/GI International Conference on. IEEE (1994)

  • Eigen, M., Schuster, P.: A principle of natural self-organization. Naturwissenschaften. 64(11), 541–565 (1977)

    Article  Google Scholar 

  • Feifei, L., Fei, L.: Time-Jerk Optimal Planning of Industrial Robot Trajectories. (2016)

  • Guo, S., Li, H., Cai, G.: Deployment dynamics of a large-scale flexible solar Array system on the ground. J Astronaut Sci. 66, 225–246 (2019)

    Article  Google Scholar 

  • Guoliang, M.A., Bo, G., Minglong, X., et al.: Method for active suspension of hoop truss structure based on voice coil motor. Spacecraft Environ. Eng. (2018)

  • Hu, S.D., Li, H., Tzou, H.S.: Precision microscopic actuations of parabolic cylindrical Shell reflectors. J. Vib. Acoust. 137(1), 011008 (2015)

    Article  Google Scholar 

  • Jorgensen, J.R., Louis, E.L., Hinkle, J.D., et al.: Dynamics of an elastically deployable solar array: ground test model validation. Collection of Technical Papers – AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p. 3 (2005)

  • Krutyansky, L., Brysev, A., Zoueshtiagh, F., Pernod, P., Makalkin, D.: Measurements of interfacial tension coefficient using excitation of progressive capillary waves by radiation pressure of ultrasound in microgravity. Microgravity Sci. Technol. 31, 723–732 (2019)

    Article  Google Scholar 

  • Lindner, D.K., Twitty, G., Goff, R.: Damage detection, location, and estimation for large truss structures. Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, & Materials Conference. AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference (2013)

  • Liu, W., Zhang, Y., Li, Z., Dong, W.: Control performance simulation and tests for microgravity active vibration isolation system onboard the Tianzhou-1 cargo spacecraft. Astrodyn. 2, 339–360 (2018)

    Article  Google Scholar 

  • Mengliang, Z.: Dynamic theory analysis, simulation and experiments for deployment process of deployable space structures. Zhejiang University, Hangzhou (2007)

    Google Scholar 

  • Mitsugi, J., Ando, K., Senbokuya, Y., et al.: Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astronaut. 47(1), 19–26 (2000)

    Article  Google Scholar 

  • Pan, J., Wei, Y.: The improved iteration method by correcting characteristic value for transformation of three-dimensional coordinates based on large rotation angle and quaternions. J. Geodesy Geodynamics. (2019)

  • Qi, N.M., Zhang, W.H., Gao, J.Z.: The primary discussion for the ground simulation system of spatial microgravity. Aerospace Control. 29(3), 95–100 (2011)

    Google Scholar 

  • Rohit, G.R., Prajapati, J.M., Patel, V.B.: Coupling of finite element and Meshfree method for structure mechanics application: a review. Int. J. Comput. Methods. (2018)

  • Salar, M., Ghasemi, M.R., Dizangian, B., et al.: Practical optimization of deployable and scissor-like structures using a fast GA method. Front. Struct. Civ. Eng. 13(3), 557–568 (2019)

    Article  Google Scholar 

  • Sugimoto, T., Tsunoda, H., Hariu, K.I., et al.: Structural Design and Deployment Test Methods for a Large Deployable Mesh Reflector. 38th Structures, Structural Dynamics, and Materials Conference. (1997)

  • Thornton, E.A., Mahaney, J., Dechaumphai, P.: Finite element thermal-structural modeling of orbiting truss structures. Large Space Syst. Technol. 2215, 93–108 (1982)

    Google Scholar 

  • Tian, Q., Zhao, J., Liu, C., et al.: Dynamics of Space Deployable Structures. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. (2015)

  • Wang, X.J., Li, D.H., Gao, Z.H.: The optimum design of large-scale inner-tower truss-supporting structure based on finite element analysis. Adv. Mater. Res. 201-203, 2645–2648 (2011)

    Article  Google Scholar 

  • Wang, S.K., Wang, K., Zhou, Y.L., Yan, B., Li, X., Zhang, Y., Wu, W.B., Wang, A.P.: Development of the varying gravity rack(VGR) for the Chinese Space Station. Microgravity Sci. Technol. 31, 95–107 (2019)

    Article  Google Scholar 

  • Watanabe, Y., Araki, K., Nakamura, Y.: Microgravity experiments for a visual feedback control of a space robot capturing a target. Intelligent Robots and Systems, 1998. Proceedings. 1998 IEEE/RSJ International Conference on IEEE (1998)

  • Wen-Hui, Z., Engineering, S.O., University L: Discussion of three-dimensional microgravity simulation methods for free-floating space manipulators. J Air Force Eng. Univ. (2014)

  • Xu, W.F., Liang, B., Li, C., et al.: Review on simulated micro-gravity experiment systems of space robot. Jiqiren/Robot. 31(1), 88–96 (2009)

    Google Scholar 

  • Xu-Quan, L.: Comparision between readitional optimized algorithm and heredity algotithm. Journal of Hub University of Technology (2007)

  • Yin, T., Deng, Z., Hu, W., Wang, X.: Dynamic modeling and simulation of deploying process for space solar power satellite receiver. Appl. Math. Mech.-Engl. Ed. 39, 261–274 (2018)

    Article  MathSciNet  Google Scholar 

  • Zaussinger, F., Canfield, P., Froitzheim, A., Travnikov, V., Haun, P., Meier, M., Meyer, A., Heintzmann, P., Driebe, T., Egbers, C.: AtmoFlow-investigation of atmospheric-like fluid flows under microgravity conditions. Microgravity Sci. Technol. 31, 569–587 (2019)

    Article  Google Scholar 

  • Zhifan, L.: A combination algorithm for structural optimization based on genetic algorithm and gradient algorithm. Computer Eengineering and Applications (2003)

  • Zhu, Z., Zhang, G., Song, J., Tang, B., Ma, W., Yuan, J., Sun, C., Zhang, H., Guo, L.: Use of dynamic scaling for trajectory planning of floating pedestal and manipulator system in a microgravity environment. Microgravity Sci. Technol. 30, 511–523 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhi Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 7 The beam element numbers and corresponding node numbers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Chen, C., Jiang, S. et al. Optimization Analysis of Microgravity Experimental Facility for the Deployable Structures Based on Force Balance Method. Microgravity Sci. Technol. 32, 773–785 (2020). https://doi.org/10.1007/s12217-020-09807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09807-x

Keywords

Navigation