Skip to main content
Log in

Effect of Surface Evaporation on Steady Thermocapillary Convection in an Annular Pool

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In order to understand the effect of surface evaporation on thermocapillary convection in an annular pool, a series of numerical simulation on thermocapillary convection of the fluids with Prandtl number from 0.01 to 50 in the pure vapor environment were carried out. The results show that thermocapillary convection is always coupled with the evaporation process on the free surface. With the increase of evaporation Biot number, the surface temperature decreases, and the evaporation mass flux near the hot wall increases obviously. However, near the cold wall, the evaporation mass flux increases first, and then decreases. When Marangoni number is small, the total evaporation mass rate at free surface increases with the increase of evaporation Biot number; when Marangoni number is larger, it increases first and then approaches a constant value. The aspect ratio of the annular pool has a positive influence on the thermocapillary convection strength and the total evaporation mass rate. With the increase of Prandtl number, the surface temperature rises gradually and the evaporative mass flux increases, and the thermocapillary convection cell moves gradually toward the outer wall and the free surface. This effect decreases with the increase of evaporation Biot number When evaporation Biot number is smaller, the total evaporation mass rate increases with the Prandtl number; when Biot number is larger, Prandtl number has little impact on the total evaporation mass rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Bi :

evaporation Biot number

c p :

specific heat capacity, kJ/(kg ⋅K)

d :

depth, m

h fg :

latent heat of vaporization, kJ/kg

j :

evaporation mass flux, kg/(m 2⋅s)

J :

nondimensional evaporation mass flux

Ja :

Jacob number

J m :

total evaporation mass rate, kg/s

M :

molar mass, g/mol

Ma :

Marangoni number

p :

pressure, Pa

P :

nondimensional pressure

Pr :

Prandtl number

r :

radius, m

R :

dimensionless radius; universal gas constant

t :

time, s

T :

temperature, K

u :

radial velocity, m/s

U :

nondimensional radial velocity

V :

nondimensional velocity vector

w :

axial velocity, m/s

W :

Nondimensional axial velocity

z :

axial coordinate, m

Z :

nondimensional axial coordinate

Greek symbols :

α :

accommodation coefficient; thermal diffusivity, m 2/s

ε :

aspect ratio

γ T :

temperature coefficient of surface tension, N/(m ⋅K)

η :

radius ratio

μ :

dynamic viscosity, kg/(m ⋅s)

ν :

kinematic viscosity, m 2/s

Θ:

dimensionless temperature

ρ :

density, kg/m 3

τ :

dimensionless time

ψ :

dimensionless stream function

Subscripts :

h:

high

i:

inner

max:

maximum

o:

outer

s:

saturation

v:

vapor

References

  • Aktershev, S.P.: Stability of the heated liquid film in the presence of the thermocapillary effect. Thermophysics and Aeromechanics 20(1), 1–16 (2013)

    Article  Google Scholar 

  • Avramenko, A.A., Shevchuk, I.V., Harmand, S., Tyrinov, A.I.: Thermocapillary instability in an evaporating two-dimensional thin layer film. Int. J. Heat Mass Transf. 91, 77–88 (2015)

    Article  Google Scholar 

  • Chai, A.T., Zhang, N.: Experimental study of Marangoni-Bénard convection in a liquid layer induced by evaporation. Experimental Heat Transfer 11(3), 187–205 (1998)

    Article  MathSciNet  Google Scholar 

  • Hu, W.R., Tang, Z.M., Li, K.: Thermocapillary convection in floating zones. Appl. Mech. Rev. 61(1), 010803 (2008)

    Article  MATH  Google Scholar 

  • Li, Y.R., Peng, L., Akiyama, Y., Imaishi, N.: Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in annular pool. J. Cryst. Growth 259(4), 374–387 (2003)

    Article  Google Scholar 

  • Li, Y.R., Imaishi, N., Azami, T., Hibiya, T.: Three-dimensional oscillatory flow in a thin annular pool of silicon melt. J. Cryst. Growth 260(1–2), 28–42 (2004a)

    Article  Google Scholar 

  • Li, Y.R., Peng, L., Wu, S.Y., Zeng, D.L., Imaishi, N.: Thermocapillary convection in a differentially heated annular pool for moderate Prandtl number fluid. Int. J. Therm. Sci. 43(6), 587–593 (2004b)

    Article  Google Scholar 

  • Li, Y.R., Zhou, Y.L., Tang, J.W., Gong, Z.X.: Two-dimensional numerical simulation for flow pattern transition of thermal-solutal capillary convection in an annular pool. Microgravity Sci. Technol. 25, 225–230 (2013)

    Article  Google Scholar 

  • Liu, Q.S., Wang, Y., Ji, Y.: Coupling mechanism of evaporation phase-change and interfacial flow. J. Eng. Thermophys. 31, 1751–1754 (2010). (In Chinese)

    Google Scholar 

  • Mercier, J.F., Normand, C.: Influence of the Prandtl number on the location of recirculation eddies in thermocapillary flows. Int. J. Heat Mass Transf. 45, 793–801 (2012)

    Article  MATH  Google Scholar 

  • Palmer, H.J.: The hydrodynamic stability of rapidly evaporating liquids at reduced pressure. J. Fluid Mech. 75, 487–511 (1976)

    Article  MATH  Google Scholar 

  • Schwabe, D., Benz, S.: Thermocapillary flow instabilities in an annulus under microgravity- results of the experiment magia. Adv. Space Res. 29(4), 629–638 (2002)

    Article  Google Scholar 

  • Schwabe, D., Zebib, A., Sim, B.C.: Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. J. Fluid Mech. 491, 239–258 (2003)

    Article  MATH  Google Scholar 

  • Sim, B.C., Zebib, A., Schwabe, D.: Oscillatory thermocapillary convection in open cylindrical annuli. Part 2. Simulations. J. Fluid Mech. 491, 259–274 (2003)

    Article  MATH  Google Scholar 

  • Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layer. J. Fluid Mech. 132, 119–143 (1983)

    Article  MATH  Google Scholar 

  • Sobac, B., Brutin, D.: Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate. Phys. Fluids 24(3), 032103 (2012)

    Article  Google Scholar 

  • Torregrosa, A.J., Hoyas, S., Perez-Quiles, M.J., Mompo-Laborda, J.M.: Bifurcation diversity in an annular pool heated from below: Prandtl and Biot numbers effects. Communications in Computational Physics 13 (2), 428–441 (2013)

    Article  Google Scholar 

  • Wei, H.H.: Thermocapillary instability of core-annular flows. Phys. Fluids 17(10), 102102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, J., Liu, Q.S., Liu, R.: Coupling of evaporation and thermocapillary convection in a liquid layer with mas and heat exchanging interface. Chin. Phys. Lett. 25(2), 608–611 (2008)

    Article  Google Scholar 

  • Zeng, Z., Mizuseki, H., Shimamura, K., Fukuda, T., Kawazoe, Y., Higashino, K.: Usefulness of experiments with model fluid for thermocapillary convection - effect of Prandtl number on two-dimensional thermocapillary convection. J. Cryst. Growth 234, 272–278 (2002)

    Article  Google Scholar 

  • Zhang, N., Chao, D.F.: Mechanisms of convection instability in thin liquid layers induced by evaporation. International Communications in Heat and Mass Transfer 26(8), 1069–1080 (1999)

    Article  Google Scholar 

  • Zhang, L., Duan, L., Kang, Q.: An experimental research on surface oscillation of buoyant-thermocapillary convection in open cylindrical annuli. Acta Mech. Sinica 30(5), 681–686 (2014)

    Article  Google Scholar 

  • Zhou, X.M., Huang, X.L.: Numerical simulation of thermocapillary-buoyant convection in an annular pool under various gravity levels. Chin. Phys. Lett. 29(7), 074704 (2012)

    Article  MathSciNet  Google Scholar 

  • Zhu, Z.Q., Liu, S.Q.: Coupling of thermocapillary convection and evaporation effect in a liquid layer when the evaporating interface is open to air. Chin. Sci. Bull. 55(3), 233–238 (2010)

    Article  Google Scholar 

  • Zhu, Z.Q., Liu, Q.S.: Experimental investigation of thermocapillary convection in a liquid layer with evaporating interface. Chin. Phys. Lett. 5(12), 4046–4049 (2008)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 11532015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Rong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, YR. & Wu, CM. Effect of Surface Evaporation on Steady Thermocapillary Convection in an Annular Pool. Microgravity Sci. Technol. 28, 499–509 (2016). https://doi.org/10.1007/s12217-016-9510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9510-0

Keywords

Navigation