Skip to main content
Log in

Changes in Gene Expression of E. coli under Conditions of Modeled Reduced Gravity

  • Original Article
  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

Relatively few studies have examined bacterial responses to the reduced gravity conditions that are experienced by bacteria grown in space. In this study, whole genome expression of Escherichia coli K12 under clinorotation (which models some of the conditions found under reduced gravity) was analyzed. We hypothesized that phenotypic differences at cellular and population levels under clinorotation (hereafter referred to as modeled reduced gravity) are directly coupled to changes in gene expression. Further, we hypothesized that these responses may be due to indirect effects of these environmental conditions on nutrient accessibility for bacteria. Overall, 430 genes were identified as significantly different between modeled reduced gravity conditions and controls. Up-regulated genes included those involved in the starvation response (csiD, cspD, ygaF, gabDTP, ygiG, fliY, cysK) and redirecting metabolism under starvation (ddpX, acs, actP, gdhA); responses to multiple stresses, such as acid stress (asr, yhiW), osmotic stress (yehZYW), oxidative stress (katE, btuDE); biofilm formation (lldR, lamB, yneA, fadB, ydeY); curli biosynthesis (csgDEF), and lipid biosynthesis (yfbEFG). Our results support the previously proposed hypothesis that under conditions of modeled reduced gravity, zones of nutrient depletion develop around bacteria eliciting responses similar to entrance into stationary phase which is generally characterized by expression of starvation inducible genes and genes associated with multiple stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerley, D.F., Barak, Y., Lynch, S.V., Curtin, J., Matin, A.: Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188, 3371 (2006)

    Article  Google Scholar 

  • Albrecht-Buehler, G.: Possible mechanisms of indirect gravity sensing by cells. Gravit. Space Biol. Bull. 4, 25 (1991)

    Google Scholar 

  • Baker, P.W., Leff, L.G.: The effect of simulated microgravity on bacteria from the Mir space station. Microgravity Sci. Technol. 15, 35 (2004)

    Article  Google Scholar 

  • Baker, P.W., Leff, L.G.: Attachment to stainless steel by Mir Space Station bacteria growing under modeled reduced gravity at varying nutrient concentrations. Biofilms 2, 1 (2005a)

    Article  Google Scholar 

  • Baker, P.W., Leff, L.G.: Intraspecific differences in bacterial responses to modelled reduced gravity. J. Appl. Microbiol. 98, 1239 (2005b)

    Article  Google Scholar 

  • Baker, P.W., Leff, L.G.: Mir space station bacteria responses to modeled reduced gravity under starvation conditions. Adv. Space Res. 38, 1152 (2006)

    Article  Google Scholar 

  • Baker, P.W., Meyer, M.L., Leff, L.G.: Escherichia coli growth under modeled reduced gravity. Microgravity Sci. Technol. 15, 39 (2004)

    Article  Google Scholar 

  • Beloin, C., Valle, J., Latour-Lambert, P., Faure, P., Kzreminski, M., Balestrino, D., Haagensen, J.A., Molin, S., Prensier, G., Arbeille, B., Ghigo, J.M.: Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 51, 659 (2004)

    Article  Google Scholar 

  • Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289 (1995)

    MathSciNet  MATH  Google Scholar 

  • Bishop, R.E., Leskiw, B.K., Hodges, R.S., Kay, C.M., Weiner, J.H.: The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J. Mol. Biol. 280, 583 (1998)

    Article  Google Scholar 

  • Boos, W., Ehmann, U., Bremer, E., Middendorf, A., Postma, P.: Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J. Biol. Chem. 262, 13212 (1987)

    Google Scholar 

  • Boot, I.R., Cash, P., O’Byrne, C.: Sensing and adapting to acid stress. Antonie Van Leeuwenhoek 81, 33 (2002)

    Article  Google Scholar 

  • Brown, R.B., Klaus, D., Todd, P.: Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli. Microgravity Sci. Technol. 13, 24 (2002)

    Article  Google Scholar 

  • Cashel, M., Gentry, D.R., Hernandez, V.J., Vinella, D.: The stringent response. In: Neidhardt, F.C., Curtiss III, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S, Riley, M., Schaechter, M., Umbarger, H.E. (eds.) Escherichia coli and Salmonella: cellular and molecular biology, p. 1458. ASM, Washington, D.C. (1996)

    Google Scholar 

  • Chang, L., Wei, L.I., Audia, J.P., Morton, R.A., Schellhorn, H.E.: Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor. Mol. Microbiol. 34, 756 (1999)

    Article  Google Scholar 

  • Checroun, C., Gutierrez, C.: Sigma(s)-dependent regulation of yehZYXW, which encodes a putative osmoprotectant ABC transporter of Escherichia coli. FEMS Microbiol. Lett. 236, 221 (2004)

    Google Scholar 

  • Death, A., Ferenci, T.: The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res-Microbiol. 144, 529 (1993)

    Article  Google Scholar 

  • Elledge, S.J., Walker, G.C.: Proteins required for ultraviolet light and chemical mutagenesis. Identification of the products of the umuC locus of Escherichia coli. J. Mol. Biol. 164, 175 (1983)

    Article  Google Scholar 

  • England, L.S., Gorzelak, M., Trevors, J.T.: Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim. Biophys. Acta 1624, 76 (2003)

    Google Scholar 

  • Ferrandez, A., Minambres, B., Garcia, B., Olivera, E.R., Luengo, J.M., Garcia, J.L., Diaz, E.: Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J. Biol. Chem. 273, 25974 (1998)

    Article  Google Scholar 

  • Gao, H., Ayyaswamy, P.S., Ducheyne, P.: Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel. Microgravity Sci. Technol. 10, 154 (1997)

    Google Scholar 

  • Gao, Q., Fang, A., Pierson, D.L., Mishra, S.K., Demain, A.L.: Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl. Microbiol. Biotechnol. 56, 384 (2001)

    Article  Google Scholar 

  • Gimenez, R., Nunez, M.F., Badia, J., Aguilar, J., Baldoma, L.: The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J. Bacteriol. 185, 6448 (2003)

    Article  Google Scholar 

  • Hammond, T.G., Hammond, J.M.: Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Renal. Physiol. 281, F12 (2001)

    Google Scholar 

  • Harder, W., Dijkhuizen, L.: Physiological Responses to Nutrient Limitation. Annu. Rev. Microbiol. 37, 1 (1983)

    Article  Google Scholar 

  • Helling, R.B.: Why does Escherichia coli have two primary pathways for synthesis of glutamate? J. Bacteriol. 176, 4664 (1994)

    Google Scholar 

  • Hengge-Aronis, R.: Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373 (2002)

    Article  Google Scholar 

  • Hood, M.A., Guckert, J.B., White, D.C., Deck, F.: Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl Environ Microbiol. 52, 788 (1986)

    Google Scholar 

  • Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249 (2003)

    Article  MATH  Google Scholar 

  • Kacena, M.A., Manfredi, B., Todd, P.: Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravity Sci. Technol. 12, 74 (1999a)

    Google Scholar 

  • Kacena, M.A., Merrell, G.A., Manfredi, B., Smith, E.E., Klaus, D.M., Todd, P.: Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl. Microbiol. Biotechnol. 51, 229 (1999b)

    Article  Google Scholar 

  • Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., Karp, P.D.: EcoCyc: a comprehensive database resource for Escherichia coli. Nucl. Acids Res. 33, D334 (2005)

    Article  Google Scholar 

  • Klaus, D.M.: Clinostats and bioreactors. Gravit. Space Biol. Bull. 14, 55 (2001)

    Google Scholar 

  • Klaus, D., Simske, S., Todd, P., Stodieck, L.: Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143, 449 (1997)

    Google Scholar 

  • Klaus, D.M., Todd, P., Schatz, A.: Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res. 21, 1315 (1998)

    Article  Google Scholar 

  • Kovárová-Kovar, K., Egli, T.: Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Bio. Rev. 62, 646 (1998)

    Google Scholar 

  • Lessard, I.A., Pratt, S.D., McCafferty, D.G., Bussiere, D.E., Hutchins, C., Wanner, B.L., Katz, L., Walsh, C.T.: Homologs of the vancomycin resistance D-Ala-D-Ala dipeptidase VanX in Streptomyces toyocaensis, Escherichia coli and Synechocystis: attributes of catalytic efficiency, stereoselectivity and regulation with implications for function. Chemistry 5, 489 (1998)

    Google Scholar 

  • Leyh, T.S., Taylor, J.C., Markham, G.D.: The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J. Biol. Chem. 263, 2409 (1988)

    Google Scholar 

  • Liu, X., Ferenci, T.: Regulation of Porin-Mediated Outer Membrane Permeability by Nutrient Limitation in Escherichia coli. J. Bacteriol. 180, 3917 (1998)

    Google Scholar 

  • Loewen, P.: Probing the structure of catalase HPII of Escherichia coli. Gene 179, 39 (1996)

    Article  Google Scholar 

  • Lynch, S.V., Brodie, E.L., Matin, A.: Role and regulation of sigma S in general resistance conferred by low-shear simulated microgravity in Escherichia coli. J. Bacteriol. 186, 8207 (2004)

    Article  Google Scholar 

  • Ma, Z., Richard, H., Tucker, D.L., Conway, T., Foster, J.W.: Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J. Bacteriol. 184, 7001 (2002)

    Article  Google Scholar 

  • Mårdén, P., Tunlid, A., Malmcrona-Friberg, K., Odham, G., Kjelleberg, S.: Physiological and morphological changes during short term starvation of marine bacterial islates. Arch. Microbiol. 142, 326 (1985)

    Article  Google Scholar 

  • Marschall, C., Labrousse, V., Kreimer, M., Weichart, D., Kolb, A., Hengge-Aronis, R.: Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. J. Mol. Biol. 276, 339 (1998)

    Article  Google Scholar 

  • Masse, E., Gottesman, S.: A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 99, 4620 (2002)

    Article  Google Scholar 

  • McLean, R.J., Cassanto, J.M., Barnes, M.B., Koo, J.H.: Bacterial biofilm formation under microgravity conditions. FEMS Microbiol. Lett. 195, 115 (2001)

    Article  Google Scholar 

  • McPherson, A.: Effects of a microgravity environment on the crystallization of biological macromolecules. Microgravity Sci. Technol. VI, 101 (1993)

    Google Scholar 

  • Mendez-Ortiz, M.M., Hyodo, M., Hayakawa, Y., Membrillo-Hernandez, J.: Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3ô,5ô-cyclic diguanylic acid. J. Biol. Chem. 281, 8090 (2006)

    Article  Google Scholar 

  • Mennigmann, H.D., Lange, M.: Growth and differentiation of Bacillus subtilis under microgravity. Naturwissenschaften 73, 415 (1986)

    Article  Google Scholar 

  • Metzner, M., Germer, J., Hengge, R.: Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol. Microbiol. 51, 799 (2004)

    Article  Google Scholar 

  • Mey, A.R., Craig, S.A., Payne, S.M.: Characterization of Vibrio cholerae RyhB: the RyhB Regulon and Role of ryhB in Biofilm Formation. Infect. Immun. 73, 5706 (2005)

    Article  Google Scholar 

  • Nickerson, C.A., Ott, C.M.: Three dimensional cell culture models for infectious disease and drug development. Bioforum Eur. 1–2, 22 (2006)

    Google Scholar 

  • Nickerson, C.A., Ott, C.M., Mister, S.J., Morrow, B.J., Burns-Keliher, L., Pierson, D.L.: Microgravity as a Novel Environmental Signal Affecting Salmonella enterica Serovar Typhimurium Virulence. Infect. Immun. 68, 3147 (2000)

    Article  Google Scholar 

  • Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., LeBlanc, C.L., Honer zu Bentrup, K., Hammond, T., Pierson, D.L.: Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J. Microbiol. Methods 54, 1 (2003)

    Article  Google Scholar 

  • Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., Pierson, D.L.: Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345 (2004)

    Article  Google Scholar 

  • Osborne, M.J., Siddiqui, N., Iannuzzi, P., Gehring, K.: The solution structure of ChaB, a putative membrane ion antiporter regulator from Escherichia coli. BMC Struct. Biol. 4, 9 (2004) DOI 10.1186/1472-6807-4-9.

    Article  Google Scholar 

  • Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)

    Article  Google Scholar 

  • Pomposiello, P.J., Demple, B.: Global adjustment of microbial physiology during free radical stress. Adv. Microb. Physiol. 46, 319 (2002)

    Article  Google Scholar 

  • Quadroni, M., Staudenmann, W., Kertesz, M., James, P.: Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur. J. Biochem. 239, 773 (1996)

    Article  Google Scholar 

  • Salgado, H., Gama-Castro, S., Martinez-Antonio, A., Diaz-Peredo, E., Sanchez-Solano, F., Peralta-Gil, M., Garcia-Alonso, D., Jimenez-Jacinto, V., Santos-Zavaleta, A., Bonavides-Martinez, C., Collado-Vides, J.: RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res. 32, D303 (2004)

    Article  Google Scholar 

  • Seputiene, V., Motiejunas, D., Suziedelis, K., Tomenius, H., Normark, S., Melefors, O., Suziedeliene, E.: Molecular characterization of the acid-inducible asr gene of Escherichia coli and its role in acid stress response. J. Bacteriol. 185, 2475 (2003)

    Article  Google Scholar 

  • Shin, S., Song, S.G., Lee, D.S., Pan, J.G., Park, C.: Involvement of iclR and rpoS in the induction of acs, the gene for acetyl coenzyme A synthetase of Escherichia coli K-12. FEMS Microbiol. Lett. 146, 103 (1997)

    Article  Google Scholar 

  • Siegel, L.M., Murphy, M.J., Kamin, H.: Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J. Biol. Chem. 248, 251 (1973)

    Google Scholar 

  • Sirko, A., Hryniewicz, M., Hulanicka, D., Bock, A.: Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J. Bacteriol. 172, 3351 (1990)

    Google Scholar 

  • Suziedeliene, E., Suziedelis, K., Garbenciute, V., Normark, S.: The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J. Bacteriol. 181, 2084 (1999)

    Google Scholar 

  • Tempest, D.W., Neijssel, O.M., Zevenboom, W.: Properties and performances in laboratory cultures; their relevance to growth in natural ecosystems. Symp. Soc. Gen. Microbiol. 34, 119 (1983)

    Google Scholar 

  • Thevenet, D., D’Ari, R., Bouloc, P.: The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J. Biotechnol. 47, 89 (1996)

    Article  Google Scholar 

  • Tucker, D.L., Ott, C.M., Huff, S., Fofanov, Y., Pierson, D.L., Willson, R.C., Fox, G.E.: Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment. BMC Microbiol. 7, 15 (2007) DOI 10.1186/1471-2180-7-15.

    Article  Google Scholar 

  • Wilson, J.W., Ott, C.M., Ramamurthy, R., Porwollik, S., McClelland, M., Pierson, D.L., Nickerson, C.A.: Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl. Environ. Microbiol. 68, 5408 (2002a)

    Article  Google Scholar 

  • Wilson, J.W., Ramamurthy, R., Porwollik, S., McClelland, M., Hammond, T., Allen, P., Ott, C.M., Pierson, D.L., Nickerson, C.A.: Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl. Acad. Sci. U. S. A. 99, 13807 (2002b)

    Article  Google Scholar 

  • Xi, H., Schneider, B.L., Reitzer, L.: Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J. Bacteriol. 182, 5332 (2000)

    Article  Google Scholar 

  • Xu, J., Johnson, R.C.: aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp. J. Bacteriol. 177, 3166 (1995)

    Google Scholar 

  • Yamada, M., Talukder, A.A., Nitta, T.: Characterization of the ssnA gene, which is involved in the decline of cell viability at the beginning of stationary phase in Escherichia coli. J. Bacteriol. 181, 1838 (1999)

    Google Scholar 

  • Yamanaka, K., Inouye, M.: Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J. Bacteriol. 179, 5 126 (1997)

    Google Scholar 

  • Zimmer, D.P., Soupene, E., Lee, H.L., Wendisch, V.F., Khodursky, A.B., Peter, B.J., Bender, R.A., Kustu, S.: Nitrogen regulatory protein C-controlled genes of Escherichia coli: Scavenging as a defense against nitrogen limitation. Proc. Natl. Acad. Sci. U. S. A. 97, 14674 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Vukanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vukanti, R., Mintz, E. & Leff, L. Changes in Gene Expression of E. coli under Conditions of Modeled Reduced Gravity. Microgravity Sci. Technol 20, 41–57 (2008). https://doi.org/10.1007/s12217-008-9012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-008-9012-9

Keywords

Navigation