Skip to main content
Log in

Bresse-Timoshenko type systems with thermodiffusion effects: well-possedness, stability and numerical results

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Bresse-Timoshenko beam model with thermal, mass diffusion and theormoelastic effects is studied. We state and prove the well-posedness of problem. The global existence and uniqueness of the solution is proved by using the classical Faedo-Galerkin approximations along with two a priori estimates. We prove an exponential stability estimate for problem under an unusual assumption, and by using a multiplier technique with frictional damping in the vertical displacement. Numerically, we construct a numerical scheme based on the \(P_1\)-finite element method for space discretization and implicit Euler scheme for time discretization. Then, we showed that the discrete energy decays, later a priori error estimates are established. Finally, some numerical simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismaticbars. Philisophical Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  2. Metrikine, A.V., Verichev, S.N.: Instability of vibrations of a moving two-mass oscillator on a flexibly supported Timoshenko beam. Arch. Appl. Mcth. 71(9), 613–624 (2001)

    Article  MATH  Google Scholar 

  3. Suiker, A., de Borst, R., Esveld, C.: Critical behaviour of a Timoshenko beam-half plane system under a moving load. Arch. Appl. Mcth. 68(3–4), 158–168 (1998)

    Article  MATH  Google Scholar 

  4. Bresse, J.A.C.: Cours de Mécaniques Appliquée. Mallet-Bachelier, Paris (1859)

    MATH  Google Scholar 

  5. Almeida Junior, D.S., Munoz Rivera, J.E., Santos, M.L.: Bresse system with Fourier law on shear force. Adv. Diff. Equ. 21(1–2), 55–84 (2016)

    MATH  Google Scholar 

  6. el Arwadi, T., Copetti, M.I.M., Youssef, W.: On the theoretical and numerical stability of the thermoviscoelastic Bresse system. Z. Angew. Math. Mech. 99(10), 1–20 (2019)

    Article  Google Scholar 

  7. Copetti, M.I.M., Arwadi, T., Fernández, J.R., Naso, M.G., Youssef, W.: Analysis of a contact problem for a viscoelastic Bresse system. ESAIM Math. Modell. Numer. Anal. 55, 887–911 (2021). https://doi.org/10.1051/m2an/2021015

    Article  MATH  Google Scholar 

  8. El Arwadi, T., Youssef, W.: On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping. Appl. Math. Optim. 83, 1831–1857 (2021). https://doi.org/10.1007/s00245-019-09611-z

    Article  MATH  Google Scholar 

  9. Elishakoff I.: An equation both more consistent and simpler than the Bresse-Timoshenko equation. In: Advances in Mathematical Modeling and Experimental Methods for Materials and Structures, Solid Mech. Appl., 249–254. Springer, Berlin (2010)

  10. Aouadi, M., Castejon, A.: Properties of global and exponential attractors for nonlinear thermo-diffusion Timoshenko system. J. Math. Phys. 60, 081503 (2019). https://doi.org/10.1063/1.5066224

    Article  MATH  Google Scholar 

  11. Almeida Junior, D.S., Ramos, A.J.A., Santos, M.L., Gutemberg, R.M.L.: Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency. Z. Angew. Math. Mech. 98(8), 132–1333 (2018)

    Article  Google Scholar 

  12. Almeida Junior, D.S., Elishakoff, I., Ramos, A.J.A., Gutemberg, R.M.L.: The hypothesis of equal wave speeds for stabilization of Bresse-Timoshenko system is not necessary anymore: the time delay cases. IMA J. Appl. Math. 84(4), 763–796 (2019)

    Article  MATH  Google Scholar 

  13. Choucha, A., Ouchenane, D., Zennir, Kh., Feng, B.: Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6437

    Article  Google Scholar 

  14. Feng, B., Junior, A.D.S., dos Santos, M.J., Rosario Miranda, L.G.: A new scenario for stability of nonlinear Bresse-Timoshenko type systems with time dependent delay. Z Angew. Math. Mech. 100(2), 1–17 (2020)

    Article  Google Scholar 

  15. Ramos, A.J.A., Almeida Junior, D.S., Miranda, L.G.R.: An inverse inequality for a Bresse-Timoshenko system without second spectrum of frequency. Arch. Math. 114, 709–719 (2020)

    Article  MATH  Google Scholar 

  16. Almeida Junior, D.S., Ramos, A.J.A.: On the nature of dissipative Timoshenko systems at light of the second spectrum. Z. Angew. Math. Phys. 68(145), 1–31 (2017)

    MATH  Google Scholar 

  17. Bzeih, M., El Arwadi, T., Hindi, M.: Numerical analysis and simulation for Rayleigh beam equation with dynamical boundary controls. Arab. J. Math. 10, 331–349 (2021). https://doi.org/10.1007/s40065-021-00310-8

    Article  MATH  Google Scholar 

  18. Bzeih, M., El Arwadi, T., Wehbe, A., Rincon, M., Madureira, R.: Numerical analysis and simulation for a wave equation with dynamical boundary control. J. Sci. Comput. 87, 6 (2021). https://doi.org/10.1007/s10915-021-01408-z

    Article  MATH  Google Scholar 

  19. Bernardi, C., Copetti, M.I.M.: Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. Z. Angew. Math. Mech. 97, 532–549 (2017)

    Article  Google Scholar 

  20. Rincon, M.A., Copetti, M.I.M.: Numerical analysis for a locally damped wave equation. J. Appl. Anal. Comput. 30, 169–182 (2013)

    MATH  Google Scholar 

  21. Andrade, D., Jorge Silva, M.A., Ma, T.F.: Exponential stability for a plate equation with p-Laplacian and memory terms. Math. Methods Appl. Sci. 35(4), 417–426 (2012)

    Article  MATH  Google Scholar 

  22. Jorge Silva, M.A., Ma, T.F.: On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type. IMA J. Appl. Math. 78(6), 1130–1146 (2013)

    Article  MATH  Google Scholar 

  23. Feng, B.: Global well-posedness and stability for a viscoelastic plate equation with a time delay. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/585021

    Article  MATH  Google Scholar 

  24. Lions, J.L.: Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires. Dunod Gauthier-Villars, Paris, France (1969)

    MATH  Google Scholar 

  25. Kim, J.U.: A boundary thin obstacle problem for a wave equation. Commun. Part. Diff. Equ. 14(8–9), 1011–1026 (1989)

    Article  MATH  Google Scholar 

  26. Ramos, A.J.A., Aouadi, M., Almeida Junior, D.S., Freitas, M.M., Araujo, M.L.: A new stabilization scenario for Timoshenko systems with thermo-diffusion effects in second spectrum perspective. Arch. Math. (2020). https://doi.org/10.1007/s00013-020-01526-4

    Article  MATH  Google Scholar 

Download references

Acknowledgements

For any decision, the authors would like to thank the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. El Arwadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhindi, M., Zennir, K., Ouchenane, D. et al. Bresse-Timoshenko type systems with thermodiffusion effects: well-possedness, stability and numerical results. Rend. Circ. Mat. Palermo, II. Ser 72, 169–194 (2023). https://doi.org/10.1007/s12215-021-00672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-021-00672-0

Keywords

Mathematics Subject Classification

Navigation