Skip to main content
Log in

Timoshenko system with fractional operator in the memory and spatial fractional thermal effect

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We consider the differential system

$$\begin{aligned}&\rho _{1}\varphi _{tt}-\kappa (\varphi _{xx}+\psi _{x})=0,\\&\rho _{2}\psi _{tt}-b\psi _{xx}+\kappa (\varphi _{x}+\psi )-\int _{0}^{\infty }h(s)A^{\sigma }\psi (t-s)ds +\delta \theta _{x}=0,\\&\rho _{3}\theta _{t}+\frac{1}{\beta }\int _{0}^{\infty }g(s)A^{\sigma }\theta (t-s)ds+\delta \psi _{tx}=0, \end{aligned}$$

describing a Timoshenko system with fractional operator in the memory and spatial fractional thermal effect of Gurtin–Pipkin type, which depends on a parameter \(\sigma \in [0,1].\) Under some assumptions on the kernels, the paper proved the global existence of a weak solution. In addition the utilisation of the semigroup method in fractional Hilbert space shows some results about the system stability which is related to the number of stability \( \xi _ {g} \) and the parameter of the fractional order \( \sigma \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E.: Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36(14), 1965–1976 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ammar-Khodja, F., Kerbal, S., Soufyane, A.: Stabilization of the nonuniform Timoshenko beam. J. Math. Anal. Appl. 327(1), 525–538 (2007)

    Article  MathSciNet  Google Scholar 

  3. Astudillo, M., Portillo Oquendo, H.: Stability results for a Timoshenko system with a fractional operator in the memory. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09587-w

    Article  MATH  Google Scholar 

  4. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  6. Chen, G., Krantz, S.G., Ma, D.W., Wayne, C.E., West, H.H.: The Euler–Bernoulli beam equation with boundary energy dissipation. Oper. Methods Optim. Control Probl. 108, 67–96 (1987)

    MathSciNet  Google Scholar 

  7. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(4), 297–308 (1970)

    Article  MathSciNet  Google Scholar 

  8. Danese, V., Dell’Oro, F., Pata, V.: Stability analysis of abstract systems of Timoshenko type. arXiv preprint arXiv:1504.00804 (2015)

  9. Dell’Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin–Pipkin thermal law. J. Differ. Equ. 257(2), 523–548 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dridi, H., Djebabla, A.: On the stabilization of linear porous elastic materials by microtemperature effect and porous damping. Annali Dell’universita’di Ferrara 66, 13–25 (2019)

    Article  MathSciNet  Google Scholar 

  11. Fabrizio, M., Lazzari, B.: On the existence and the asymptotic stability of solutions for linearly viscoelastic solids. Arch. Ration. Mech. Anal. 116(2), 139–152 (1991)

    Article  MathSciNet  Google Scholar 

  12. Gearhart, L.: Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)

    Article  MathSciNet  Google Scholar 

  13. Grasselli, M., Pata, V.: Uniform attractors of nonautonomous dynamical systems with memory. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, Semigroups and Functional Analysis, pp. 155–178. Springer, Berlin (2002)

    Chapter  Google Scholar 

  14. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  16. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)

    Article  MathSciNet  Google Scholar 

  17. Júnior, D.S.A., Ramos, A.J.A.: On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency. Zeitschrift für angewandte Mathematik und Physik 68(6), 145 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25(6), 1417–1429 (1987)

    Article  MathSciNet  Google Scholar 

  19. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, vol. 398. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  20. Messaoudi, S.A., Mustafa, M.I.: On the internal and boundary stabilization of Timoshenko beams. Nonlinear Differ. Equ. Appl. 15(6), 655–671 (2008)

    Article  MathSciNet  Google Scholar 

  21. Messaoudi, S.A., Said-Houari, B.: Energy decay in a Timoshenko-type system of thermoelasticity of type III. J. Math. Anal. Appl. 348(1), 298–307 (2008)

    Article  MathSciNet  Google Scholar 

  22. Rivera, J.E., Racke, R.: Global stability for damped Timoshenko systems. Discrete Contin. Dyn. Syst. (2002). https://doi.org/10.3934/dcds.2003.9.1625

    Article  MATH  Google Scholar 

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer, Berlin (2012)

    MATH  Google Scholar 

  24. Prüss, J.: On the spectrum of -semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984)

    Article  MathSciNet  Google Scholar 

  25. Raposo, C.A., Ferreira, J., Santos, M.L., Castro, N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18(5), 535–541 (2005)

    Article  MathSciNet  Google Scholar 

  26. Rivera, J.E.M., Racke, R.: Mildly dissipative nonlinear Timoshenko systems—global existence and exponential stability. J. Math. Anal. Appl. 276(1), 248–278 (2002)

    Article  MathSciNet  Google Scholar 

  27. Santos, M.L., Almeida Júnior, D.S., Rivera, J.E.M.: The stability number of the Timoshenko system with second sound. J. Differ. Equ. 253(9), 2715–2733 (2012)

    Article  MathSciNet  Google Scholar 

  28. Soufyane, A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Ser. I Math. 328(8), 731–734 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Tian, X., Zhang, Q.: Stability of a Timoshenko system with local Kelvin–Voigt damping. Zeitschrift für angewandte Mathematik und Physik 68(1), 20 (2017)

    Article  MathSciNet  Google Scholar 

  30. Timoshenko, S.P.: LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 41(245), 744–746 (1921)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their very helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanni Dridi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dridi, H., Djebabla, A. Timoshenko system with fractional operator in the memory and spatial fractional thermal effect. Rend. Circ. Mat. Palermo, II. Ser 70, 593–621 (2021). https://doi.org/10.1007/s12215-020-00513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00513-6

Keywords

Mathematics Subject Classification

Navigation