Skip to main content
Log in

Stability Results for a Timoshenko System with a Fractional Operator in the Memory

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of Timoshenko systems with a fractional operator in the memory term depending on a parameter \(\theta \in [0,1]\) and acting only on one equation of the system. Considering exponentially decreasing kernels, we find exact decay rates. To be precise, we show that for \(\theta \in [0,1)\), the system decay polynomially with rates that depend on the value of the difference of the wave propagation speeds. We also prove that these decay rates are optimal. Moreover, when \(\theta =1\) and the equations have the same propagation speeds we obtain the exponential decay of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2, 127–150 (2002)

    Article  MathSciNet  Google Scholar 

  2. Almeida Júnior, D.S., Ramos, A.J.A.: On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency. Z. Angew. Math. Phys. 68(6), Article 145 (2017)

  3. Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E.: Stability to weakly dissipative Timoshenko systems. Math. Methods Appl. Sci. 36, 1965–1976 (2013)

    Article  MathSciNet  Google Scholar 

  4. Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z. Angew. Math. Phys. 65, 1233–1249 (2014)

    Article  MathSciNet  Google Scholar 

  5. Almeida Júnior, D.S., Ramos, A.J.A., Santos, M.L., Gutemberg, R.M.L.: Asymptotic behavior of weakly dissipative Bresse–Timoshenko system on influence of the second spectrum of frequency. Z. Angew. Math. Mech. (ZAMM) 98(8), 1320–1333 (2018)

    Article  MathSciNet  Google Scholar 

  6. Ammar-Khodja, F., Benabdallah, A., Muñoz Rivera, J.E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194, 82–115 (2003)

    Article  MathSciNet  Google Scholar 

  7. Ammar-Khodja, F., Kerbal, S., Soufyane, A.: Stabilization of the nonuniform Timoshenko beam. J. Math. Anal. Appl. 327, 525–538 (2007)

    Article  MathSciNet  Google Scholar 

  8. Apalara, T.A., Messaoudi, S.A., Keddi, A.A.: On the decay rates of Timoshenko system with second sound. Math. Methods Appl. Sci. 39, 2671–2684 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bassam, M., Mercier, D., Nicaise, S., Wehbe, A.: Polynomial stability of the Timoshenko system by one boundary damping. J. Math. Anal. Appl. 425, 1177–1203 (2015)

    Article  MathSciNet  Google Scholar 

  10. Benaissa, A., Benazzouz, S.: Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. Z. Angew. Math. Phys. 68, Article 94 (2017)

  11. Berti, A., Muñoz Rivera, J.E., Naso, M.G.: A contact problem for a thermoelastic Timoshenko beam. Z. Angew. Math. Phys. 66, 1969–1986 (2015)

    Article  MathSciNet  Google Scholar 

  12. Borichev, A., Tomilov, Y.: Optimal polynmial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2009)

    Article  Google Scholar 

  13. Dafermos, C.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  Google Scholar 

  14. Danese, V., Dell’Oro, F., Pata, V.: Stability analysis of abstract systems of Timoshenko type. J. Evol. Equ. 16, 587–615 (2016)

    Article  MathSciNet  Google Scholar 

  15. Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194, 221–251 (2009)

    Article  MathSciNet  Google Scholar 

  16. Gearhart, L.: Spectral theory for contraction semigroups on Hilbert spaces. Trans. AMS 236, 385–394 (1978)

    Article  MathSciNet  Google Scholar 

  17. Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Contr. Optim. 25, 1417–1429 (1987)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall, Boca Raton (1999)

    MATH  Google Scholar 

  19. Messaoudi, S.A., Mustafa, M.I.: On the internal and boundary stabilization of Timoshenko beams. Nonlinear Differ. Equ. Appl. 15(6), 655–671 (2008)

    Article  MathSciNet  Google Scholar 

  20. Mori, N., Xu, J., Kawashima, S.: Global existence and optimal decay rates for the Timoshenko system: the case of equal wave speeds. J. Differ. Equ. 258, 1494–1518 (2015)

    Article  MathSciNet  Google Scholar 

  21. Oquendo, H.P., Raya, R.P.: Best rates of decay for coupled waves with different propagation speeds. Z. Angew. Math. Phys. 68, Art. 77 (2017)

  22. Oquendo, H.P., Astudillo, M.: Optimal decay for plates with rotational inertia and memory. Math. Nachr. (2019). https://doi.org/10.1002/mana.201800170

    Article  MathSciNet  MATH  Google Scholar 

  23. Muñoz Rivera, J.E., Fernández Sare, H.D.: Stability of Timoshenko systems with past history. J. Math. Anal. Appl. 339, 482–502 (2008)

    Article  MathSciNet  Google Scholar 

  24. Rivera, J.E.M., Naso, M.G.: Optimal energy decay rate for a class of weakly dissipative second-order systems with memory. Appl. Math. Lett. 23, 743–746 (2010)

    Article  MathSciNet  Google Scholar 

  25. Muñoz Rivera, J.E., Racke, R.: Global stability for damped Timoshenko systems. Discrete Contin. Dyn. Syst. 9, 1625–1639 (2003)

    Article  MathSciNet  Google Scholar 

  26. Mustafa, M.I.: Laminated Timoshenko beams with viscoelastic damping. J. Math. Anal. Appl. 466, 619–641 (2018)

    Article  MathSciNet  Google Scholar 

  27. Raposo, C.A., Ferreira, J., Santos, M.L., Castro, N.N.O.: Exponential stability for Timoshenko system with two weak dampings. Appl. Math. Lett. 18, 535–541 (2005)

    Article  MathSciNet  Google Scholar 

  28. Said-Houari, B., Kasimov, A.: Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same. J. Differ. Equ. 255, 611–632 (2013)

    Article  MathSciNet  Google Scholar 

  29. Soufyane, A.: Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér. I Math. 328, 731–734 (1999)

    Article  MathSciNet  Google Scholar 

  30. Tian, X., Zhang, Q.: Stability of a Timoshenko system with local Kelvin–Voigt damping, Z. Angew. Math. Phys. 68, Article 20 (2017)

Download references

Acknowledgements

The first author has been partially supported by PNPD/CAPES (CAPES Postdoctoral National Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Astudillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astudillo, M., Portillo Oquendo, H. Stability Results for a Timoshenko System with a Fractional Operator in the Memory. Appl Math Optim 83, 1247–1275 (2021). https://doi.org/10.1007/s00245-019-09587-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09587-w

Keywords

Navigation