Skip to main content
Log in

Dominance of bacillus sp. alter microbiological and nutritional quality and improve aerobic stability of the corn silage

  • Research Paper
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the impacts of L. plantarum, L. brevis, and E. faecium on microbiological and nutritional profiling and aerobic stability of corn silage. For this purpose, corn fodder was chopped and ensiled with a dry matter (DM) content of 27–30%. An inoculum consisting of Lactobacillus plantarum IFA 96 (DSM 19456), Enterococcus faecium B1034 (DSM3530), Lactobacillus brevis IFA 92 (D5119456) mix culture was added at rate of 2, 4, and 6 g/ton. The fermentation was carried out at ambient temperature in polythene bags under anaerobic condition for 45 days. It was found that the 4 g/ton microbial inoculant in the corn silages have significant impacts on silage nutritive values in terms of (p < 0.05) higher pH, dry matter, and organic matter contents, while decreasing the fiber contents. This could be related to the unique combination of microbiota present in the inoculum. The total bacterial counts and yeasts were significantly (p < 0.05) increased with increase in the concentration of inoculant while Lactobacillus count was (p < 0.05) increased with increase in 4 g/ton inoculate level. Mostly silages samples were positive for Aspergillus flavus, Listeria monocytogenes, and coliform expect the silage treated with 4 g/ton microbial inoculants. The results showed that silages inoculated with 4 g/ton showed improved nutritive and fermentative characteristics and higher aerobic stability of the corn silage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The authors acknowledge that the data presented in this study must be deposited and made publicly available in an acceptable repository, prior to publication.

Code availability

Not applicable.

References

  • Abdelhadi LO, Santini FJ, Gagliostro GA (2005) Corn silage or high moisture corn supplements for beef heifers grazing temperate pastures: effects on performance, ruminal fermentation and in situ pasture digestion. Anim Feed Sci Technol 118:63–78

    Article  Google Scholar 

  • Acosta Aragon Y, Jatkauskas J, Vrotniakiene V (2012) The effect of a silage inoculant on silage quality, aerobic stability, and meat production on farm scale. ISRN Vet Sci 2012:345927

    Article  CAS  Google Scholar 

  • Agati V, Guyot J-P, Morlon-Guyot J, Talamond P, Hounhouigan D (1998) Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. J Appl Microbiol 85:512–520

    Article  CAS  Google Scholar 

  • Amanullah SM, Kim DH, Lee HJ, Joo YH, Kim SB, Kim SC (2014) Effects of microbial additives on chemical composition and fermentation characteristics of barley silage. Asian Australas J Anim Sci 27:511–517

    Article  CAS  Google Scholar 

  • AOAC (2000) Official methods of analysis. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Arasu MV, Jung MW, Kim DH, Ilavenil S, Jane M, Park HS, Al-Dhabi NA, Jeon BT, Choi KC (2014) Enhancing nutritional quality of silage by fermentation with lactobacillus plantarum. Indian J Microbiol 54:396–402

    Article  CAS  Google Scholar 

  • Ashbell G, Weinberg Z (2006) Silage production and utilization. Food and Agriculture Organization, FAO

    Google Scholar 

  • Asoodeh A, Chamani J, Lagziana M (2010) A novel thermostable, acidophilic a-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization. Inter J Biol Macromol 46:289–297

    Article  CAS  Google Scholar 

  • Auerbach H, Oldenburg E, Weissbach F (1998) Incidence of Penicillium roqueforti and roquefortine C in silages. J Sci Food Agric 76:565–572

    Article  CAS  Google Scholar 

  • Ávila CLdS, Valeriano AR, Pinto JC, Figueiredo HCP, Rezende AVd, Schwan RF (2010) Chemical and microbiological characteristics of sugar cane silages treated with microbial inoculants. R. Bras. Zootec. 39

  • BaiKumar SMR, Kumar DJM, Balashanmugam P, Kumaran MDB, Kalaichelvan PT (2012) Cellulase production by Bacillus subtilis isolated from cow dung. Arch Appl Sci Res Scholar Res Library 4(1):269–279

    Google Scholar 

  • Baytok E, Aksu T, Karsli MA, Muruz H (2005) The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. J Vet Anim Sci 29:469–474

    Google Scholar 

  • Chahrour W, Merzouk Y, Henni J, Haddajia M, Kihal M (2013) Screening and identification of lactic acid bacteria isolated from sorghum silage processes in west Algeria. Afr J Biotech 12(14):1703–1709

    Google Scholar 

  • Chen Y, Sela S, Gamburg M, Pinto R, Weinberg ZG (2005) Fate of Escherichia coli during ensiling of wheat and corn. Appl Environ Microbiol 71:5163–5170

    Article  CAS  Google Scholar 

  • Delbes C, Ali-Mandjee L, Montel MC (2007) Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Appl Environ Microbiol 73:1882–1891

    Article  CAS  Google Scholar 

  • Denek N, Aydin SS, Can A (2017) The effects of dried pistachio (Pistachio vera L.) by-product addition on corn silage fermentation and in vitro methane production. J Appl Anim Res 45(1):185–189

  • Denoncourt P, Caillet S, Lacroix M (2006) Bacteriological and chemical changes occurring in Bunker-stored silage covered with biodegradable coating. J Appl Microbiol 103(2):261–270

  • Dolci P, Tabacco E, Cocolin L, Borreani G (2011) Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Appl Environ Microbiol 77:7499–7507

    Article  CAS  Google Scholar 

  • Donald AS, Fenlon DR, Seddon B (1995) The relationships between ecophysiology, indigenous microflora and growth of Listeria monocytogenes in grass silage. J Appl Bacteriol 79:141–148

    Article  CAS  Google Scholar 

  • Ferraretto LF, Fonseca AC, Sniffen CJ, Formigoni A, Shaver RD (2015) Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. J Dairy Sci 98:395–405

    Article  CAS  Google Scholar 

  • Filya I (2003a) The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J Dairy Sci 86:3575–3581

    Article  CAS  Google Scholar 

  • Filya I, Sucu E (2007) The effect of bacterial inoculants and a chemical preservatives on the fermentation and aerobic stability of whole crop cereal silages. Asian-Austr J Anim Sci 20:378–384

    Article  CAS  Google Scholar 

  • Gremmels JF (2008) Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Addit Contam 25:172–180

    Article  Google Scholar 

  • Guo G, Yu C, Wang Q, Xin P, Shimojo M, Shao T (2014) Silage fermentation characteristics of Italian ryegrass (Lolium multiflorum Lam.) harvested at various times on a sunny day. Crop Sci 54:851–858

    Article  CAS  Google Scholar 

  • Hao W, Wang HL, Ning TT, Yang FY, Xu CC (2015) Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian Australas J Anim Sci 28:816–826

    Article  CAS  Google Scholar 

  • Hu X, Hao W, Wang H, Ning T, Zheng M, Xu C (2015) Fermentation characteristics and lactic Acid bacteria succession of total mixed ration silages formulated with peach pomace. Asian-Australas J Anim Sci 28:502–510

    Article  CAS  Google Scholar 

  • Huang CN, Lin CP, Hsieh FC, Lee SK, Cheng KC, Liu CT (2016) Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars. World J Microbiol Biotechnol 32:183

    Article  Google Scholar 

  • Huhtanen P, Khalili H, Nousiainen JI, Rinne M, Jaakkola S, Heikkilä T, Nousiainen J (2002) Prediction of the relative intake potential of grass silage by dairy cows. Livest Prod Sci 73:111–130

    Article  Google Scholar 

  • Jalč D, Lauková A, Simonová MP, Váradyová Z, Homolka P (2009) Bacterial inoculant effects on corn silage fermentation and nutrient composition. Asian-Aust J Anim Sci 22(7):977–983

    Article  Google Scholar 

  • Jatkauskas J, Vrotniakiene V, Lúscher A, Jeangros B, Kessler W, Huguenin O, Lobsiger M, Millar N, Suter D (2004) Fermentation characteristics and nutritive value of inoculated maize silage, Land use systems in grassland dominated regions. Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004. vdf Hochschulverlag AG an der ETH Zurich, pp 1077–1079

  • Kadaikunnan S, Rejiniemon T, Khaled JM, Alharbi NS, Mothana R (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 14:9

    Article  Google Scholar 

  • Kaiser AG (2003) TopFodder sucessful silage: chapter;7, Silage Additives: 178

  • Keady TWJ, Steen WJ (1994) Effects of treating low dry matter grass with a bacterial inoculant on the intake and performance of beef cattle and studies on its mode of action. Grass Forage Sci 49:438–446

    Article  Google Scholar 

  • Koc F, Coskuntuna L, Ozduven L (2008) The effect of bacteria + enzyme mixture silage inoculant on the fermentation characteristics, cell wall contents and aerobic stabilities of maize silage. J Anim Sci 7(2):222–226

    CAS  Google Scholar 

  • Kozakai K, Nakamura T, Kobayashi Y, Tanigawa T, Osaka I, Kawamoto S, Hara S (2007) Effect of mechanical processing of corn silage on in vitro ruminal fermentation, and in situ bacterial colonization and dry matter degradation. Can J Anim Sci 87:259–267

    Article  Google Scholar 

  • Kristensen NB, Sloth KH, Højberg O, Spliid NH, Jensen C, Thøgersen R (2010) Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J Dairy Sci 93:3764–3774

    Article  CAS  Google Scholar 

  • Kung L Jr, Schmidt RJ, Ebling TE, Hu W (2007) The effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of ground and whole high-moisture corn. J Dairy Sci 90:2309–2314

    Article  CAS  Google Scholar 

  • Lim JM, Nestor KE Jr, Kung L Jr (2015) The effect of hybrid type and dietary proportions of corn silage on the lactation performance of high-producing dairy cows. J Dairy Sci 98:1195–1203

    Article  CAS  Google Scholar 

  • Mari LJ, Schmidt RJ, Nussio LG, Hallada CM, Kung L Jr (2009) Short communication: an evaluation of the effectiveness of Lactobacillus buchneri 40788 to alter fermentation and improve the aerobic stability of corn silage in farm silos. J Dairy Sci 92:1174–1176

    Article  CAS  Google Scholar 

  • Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V (2004) Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 70(10):5715–5731

    Article  CAS  Google Scholar 

  • McAllister TA, Feniuk R, Mir Z, Selinger LB, Cheng KJ (1998) Inoculants for alfalfa silage: effects on aerobic stability, digestibility and the growth performance of feedlot steers. Livest Prod Sci 53:171–181

    Article  Google Scholar 

  • McDonald P, Henderson AR, Heron SJE (1991) The biochemistry of silage. Chalcombe Publications

    Google Scholar 

  • Mohamed SA, Shabeb SA, Younis AMM, Francis F, HaMA N-E (2010) Production of cellulase in low cost medium by bacillus subtilis KO strain. World Appl Sci J 8(1):35–42

    Google Scholar 

  • Ozkose E, Akyol I, Kar B, Comlekcioglu U, Ekinci MS (2009) Expression of fungal cellulose gene in Lactococcus lactis to construct novel recombinant silage inoculants. Folia Microbiol 54:335–342

    Article  CAS  Google Scholar 

  • Pahlow G, Muck RE, Driehuis F (2003) Microbiology of ensiling. Silage Sci Technol 62:31–93

    Google Scholar 

  • Pedroso A, Adesogan A, Queiroz O, Williams S (2010) Control of Escherichia coli O157:H7 in corn silage with or without various inoculants: efficacy andmode of action. J Dairy Sci 93:1098–1104

    Article  CAS  Google Scholar 

  • Pereyra MLG, Alonso VA, Sager R, Morlaco MB, Magnoli CE, Astoreca AL, Rosa CAR, Chiacchiera SM, Dalcero AM, Cavaglieri LR (2008) Fungi and selected mycotoxins from pre- and postfermented corn silage. J Appl Microbiol 104:1034–1041

    Article  CAS  Google Scholar 

  • Polat U, Gencoglu H (2009) The effects of partial replacement of corn silage on biochemical blood parameters in lactating primiparous dairy cows Turkmen. Vet Med 54(9):407–411

    Article  CAS  Google Scholar 

  • Queiroz OC, Adesogan AT, Arriola KG, Queiroz MF (2012) Effect of a dual-purpose inoculant on the quality and nutrient losses from corn silage produced in farm-scale silos. J Dairy Sci 95:3354–3362

    Article  CAS  Google Scholar 

  • Sanderson MA (1993) Aerobic stability and in vitro fibre digestibility of microbially inoculated corn and sorghum silages. J Anim Sci 71:505–514

    Article  CAS  Google Scholar 

  • Sanni A, Morlon-Guyot J, GuyotInt J (2002) New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. J Food Microbiol 72:52–62

    Article  Google Scholar 

  • Sarwar M, Khan MA, Iqbal Z (2002) Feed resources for livestock in Pakistan. Int J Agri Biol 4:186–192

    Google Scholar 

  • Schoder D, Melzner D, Schmalwieser A, Zangana A, Winter P, Wagner M (2011) Important vectors for Listeria monocytogenes transmission at farm dairies manufacturing fresh sheep and goat cheese from raw milk. J Food Prot 74:919–924

    Article  Google Scholar 

  • Seglar B (1999) Coping with catastrophic ensiled forage losses: case studies. In: Proceedings of the 32nd AnnualConference for the American Association of Bovi

  • Shaver RD (2007) Evaluating corn silage quality for dairy cattle. University of Wisconsin—Extension. https://fyi.extension.wisc.edu/forage/files/2016/10/EvaluatingCornSilageforDairy-1.pdf. Accessed 21 May 2020

  • Seppälä A, Heikkilä T, Mäki M, Rinne M (2016) Effects of additives on the fermentation and aerobic stability of grass silages and total mixed rations. Grass Forage Sci 71:458–471

    Article  Google Scholar 

  • Storm IMLD, Kristensen NB, Raun MBL, Smedsgaard J, Thrane U (2010) Dynamics in the microbiology of maize silage during whole season storage. J Appl Microbiol 109:9

    Article  Google Scholar 

  • Sucu E, Filya I (2006) Effects of bacterial inoculants on fermentation, aerobic stability and rumen degradability characteristics of wheat silages. Turkish J Vet Anim Sci 30(2):187–193

  • Tapia MO, Stern MD, Soraci AL, Meronuckc R, Olson W, Gold S, Koski-Hulbert RL, Murphy MJ (2005) Patulin-producing molds in corn silage and high moisture corn and effects of patulin on fermentation by ruminal microbes in continuous culture. Anim Feed Sci Technol 119:247–258

    Article  CAS  Google Scholar 

  • Thaysen J (2004) Die Produktion von qualitativ hochwertigen Grassilagen [Production of high-quality grass silages]. Übers Tierernährg 32:57–102

    CAS  Google Scholar 

  • Vilar M, Yus E, Sanjuan M, Dieguez F, Rodriguez-Otero J (2007) Prevalence of and risk factors for Listeria species on dairy farms. J Dairy Sci 90:5083–5088

    Article  CAS  Google Scholar 

  • Vissers MMM, Driehuis F, Giffel MCT, Jong PD, Lankveld JMG (2007) Minimizing the level of butyric acid bacteria spores in farm tank milk. J Dairy Sci 90:3278–3285

    Article  CAS  Google Scholar 

  • Weinberg ZG, Muck RE (1996) New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 19:53–68

    Article  CAS  Google Scholar 

  • Weinberg ZG, Shatz O, Chen Y, Yosef E, Nikbahat M, Ghedalia DB, Miron J (2007) Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silage. J Dairy Sci 90:4754–4762

    Article  CAS  Google Scholar 

  • Wenning M, Buchl NR, Scherer S (2010) Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. J Biophotonics 3:493–505

    Article  CAS  Google Scholar 

  • Wiedmann M (2003) ADSA Foundation Scholar Award—an integrated science-based approach to dairy food safety: Listeria monocytogenes as a model system. J Dairy Sci 86:1865–1875

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their universities and institutes.

Funding

There were no any external funds.

Author information

Authors and Affiliations

Authors

Contributions

All authors were equal contributors in writing this review article. All the authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shakira Ghazanfar or Mahmoud Alagawany.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, S., Hanif, N.Q., Ghazanfar, S. et al. Dominance of bacillus sp. alter microbiological and nutritional quality and improve aerobic stability of the corn silage. Rend. Fis. Acc. Lincei 34, 283–293 (2023). https://doi.org/10.1007/s12210-022-01130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-022-01130-4

Keywords

Navigation