Skip to main content
Log in

Expression of fungal cellulase gene in Lactococcus lactis to construct novel recombinant silage inoculants

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The facultative anaerobic bacterium Lactococcus lactis has been used as a host for expression of a gene isolated from the anaerobic rumen fungus Neocallimastix sp. The coding region of the cellulase gene was obtained from the fungus with the aid of polymerase chain reaction amplification. The gene was then transformed into pCT vector system and the constructed recombinant plasmid was introduced into two L. lactis strains (IL403 and MG1363) by electroporation. The gene encoding the fungal originated cellulase was expressed in both strains successfully although the expression level was relatively lower in comparison with the original enzyme activity. Genetically modified L. lactis strains were used as silage inoculants for pre-biodegradation of the plant biomass during ensiling. That treatment resulted in a notable reduction of the acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents of the plant biomass used as silage material. Inoculation with recombinant strain IL1043 resulted in 4.8 and 9.7 % decrease in NDF and ADF contents, respectively while the inoculation of silage with strain MG1363 decreased the ADF content by >5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADF:

acid detergent fiber

AmpR :

ampicillin resistance

CMC:

carboxymethyl cellulose

CMCase:

carboxymethyl cellulase

ErmR :

erythromycine resistance

LAB:

lactic acid bacteria

LB:

lysogeny broth

MCS:

multi-cloning site

NDF:

neutral detergent fiber

PCR:

polymerase chain reaction

References

  • Barichievich E.M., Calza R.E.: Supernatant protein and cellulase activities of the anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl.Environ.Microbiol.56, 43–48 (1990).

    CAS  PubMed  Google Scholar 

  • Bowman G.R., Beauchemin K.A., Shelford J.A.: The proportion of the diet to which fibrolytic enzymes are added affects nutrient digestion by lactating dairy cows. J.Dairy Sci.85, 3420–3429 (2002).

    CAS  PubMed  Google Scholar 

  • Buxton D.R.: Quality related characteristics of forages as influenced by plant environment and agronomic factors. Anim.Feed Sci. Technol.59, 37–49 (1996).

    Article  Google Scholar 

  • Carneiro M.S.C., Lordelo M.M., Cunha L.F., Freire J.P.B.: Effects of dietary fiber source and enzyme supplementation on fecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglets. Anim.Feed Sci. Technol.146, 124–136 (2008).

    Article  CAS  Google Scholar 

  • Carpita N., Gibeaut D.M.: Structural models of primary cell walls of flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J.3, 1–30 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Chesson A., Forsberg C.W.: Polysaccharide degradation by rumen microorganisms, pp. 251–284 in aP.N. Hobson (Ed.) The Rumen Microbial Ecosystem. Elsevier Applied Science, London 1997.

    Google Scholar 

  • Colombatto D., Moulda F.L., Bhat M.K., Phipps R.H., Owen E.: In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage. II. Effects on rate of acidification, fibre degradation during ensiling and rumen fermentation. Anim. Feed Sci.Technol.111, 129–143 (2004a).

    Article  CAS  Google Scholar 

  • Colombatto D., Moulda F.L., Bhat M.K., Phipps R.H., Owen E.: In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage. III. Comparison of enzymes derived from psychrophilic, mesophilic or thermophilic sources. Anim. Feed Sci.Technol.111, 145–159 (2004b).

    Article  CAS  Google Scholar 

  • Comlekcioglu U., Akyol I., Ozkose E., Kar B., Ekinci M.S.: Carboxymethylcellulase production by the anaerobic rumen fungus Neocallimastix sp. GMLF7. Ann.Microbiol.58, 115–119 (2008).

    Article  CAS  Google Scholar 

  • Ekinci M.S., McCrae S.I., Flint H.J.: Isolation and over-expression of a gene encoding an extracellular β-(1,3-1,4)-glucanase from Streptococcus bovis JB1. Appl.Environ.Microbiol.63, 3752–3756 (1997).

    CAS  PubMed  Google Scholar 

  • Ekinci M.S., Flint H.J.: Expression of bifunctional genes encoding xylanase and β-(1,3-1,4)-glucanase in Gram-positive bacteria. Turk.J.Vet.Anim.Sci.25, 771–775 (2001).

    Google Scholar 

  • Filya I.: The effects of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation aerobic stability and ruminal degradability of low dry matter corn and sorghum silages. J.Dairy Sci.86, 3575–3581 (2003).

    CAS  PubMed  Google Scholar 

  • Forsberg C.W., Egbosimba E.E., MacLellan S.: Recent advances in biotechnology of rumen bacteria; a review. Asian-Austral. J.Anim.Sci.12, 93–103 (1999).

    Google Scholar 

  • Graham H., Inborr J.: Application of xylanase-based enzymes in commercial pig and poultry production, pp. 535–538 in J. Visser, G. Beldman, M.A. Kusters-van Someren, A.G.J. Voragen (Eds): Xylan and Xylanases; Progress in Biotechnology, Vol. 7. Elsevier, Amsterdam 1992.

    Google Scholar 

  • van de Guchte M., Kok J., Venema G.: Gene expression in Lactococcus lactis. FEMS Microbiol.Rev.88, 73–92 (1992).

    Google Scholar 

  • Hobson P.N.: Rumen bacteria, pp. 133–149 in J.R. Norris, D.W. Ribbons (Eds), Methods in Microbiology, Vol. 3B. Academic Press, London 1969.

    Google Scholar 

  • Joblin K.N.: Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. Appl.Environ.Microbiol.42, 1119–1122 (1981).

    PubMed  CAS  Google Scholar 

  • Klijn N., Weerkamp A.H., Devos W.M.: Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl.Environ.Microbiol.61, 788–792 (1995).

    CAS  PubMed  Google Scholar 

  • Kobayashi Y., Shinkai T., Koike S.: Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion — review. Folia Microbiol.53, 195–200 (2008).

    Article  CAS  Google Scholar 

  • Lever M.: Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Analyt. Biochem.81, 21–27 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Liyama K., Lam T.B.T., Stone B.A.: Covalent cross-links in the cell wall. Plant Physiol.104, 315–320 (1994).

    Google Scholar 

  • Lowe S.E., Theodorou M.K., Trinci A.P.J.: Cellulases and xylanases of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose and xylan. Appl.Environ.Microbiol.53, 1216–1223 (1987).

    CAS  PubMed  Google Scholar 

  • Mandel M., Higa A.: Calcium-dependent bacteriophage DNA infection. J.Mol.Biol.53, 159–162 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T., Fritsch E.F., Sambrook J.: Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1982.

    Google Scholar 

  • Merry R.J., Vinters A.L., Thomas P.I., Muller M., Muller T.: Degradation of fructans by epiphytic and inoculated lactic acid bacteria and by plant enzymes during ensilage of normal and sterile hybrid ryegrass. J.Appl.Bacteriol.79, 583–591 (1995).

    CAS  Google Scholar 

  • Mounfort D.O., Asher R.A.: Production of xylanase by the ruminal anaerobic fungus Neocallimastix frontalis. Appl.Environ.Microbiol.55, 1016–1022 (1989).

    Google Scholar 

  • Novotná Z., Fliegerová K., Šimůnek J.: Characterization of chitinases of polycentric anaerobic rumen fungi. Folia Microbiol.53, 241–245 (2008).

    Article  CAS  Google Scholar 

  • Okine A., Hanada M., Aibibula Y., Okamoto M.: Ensiling of potato pulp with or without bacterial inoculants and its effect on fermentation quality, nutrient composition and nutritive value. Anim.Feed Sci.Technol.121, 329–343 (2005).

    Article  Google Scholar 

  • Orpin C.G.: The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim.Feed Sci.Technol.10, 121–143 (1984).

    Article  CAS  Google Scholar 

  • Orpin C.G., Joblin K.N.: The rumen anaerobic fungi, pp. 140–195 in P.N. Hobson, C.S. Stewart (Eds): The Rumen Microbial Ecosystem. Blackie Academic & Professional, London 1997.

    Google Scholar 

  • Rossi F., Rudella A., Marzotto M., Dellaglio F.: Vector-free cloning of a bacterial endo-1,4-β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie van Leeuwenhoek80, 139–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Schmidt J., Szakacs G., Cenkvari E., Sipocz J., Urbanszki K., Tengerdy R.P.: Enzyme assisted ensiling of alfalfa with enzymes by solid substrate fermentation. Biores.Technol.76, 207–212 (2001).

    Article  CAS  Google Scholar 

  • Scott K.P., Mercer D.K., Glover L.A., Flint H.J.: The green fluorescent protein as a visible marker for lactic acid bacteria in complex anaerobic ecosystems. FEMS Microbiol.Ecol.26, 219–230 (1998).

    Article  CAS  Google Scholar 

  • Simon D., Chopin A.: Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie70, 559–566 (1988).

    Article  CAS  PubMed  Google Scholar 

  • van Soest P.J., Robertson J.B., Lewis R.A.: Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J.Dairy Sci.74, 3583–3597 (1991).

    PubMed  Google Scholar 

  • Švec P., Sedláček I.: Characterization of Lactococcus lactis subsp. lactis isolated from surface waters. Folia Microbiol.53, 53–56 (2008).

    Article  Google Scholar 

  • Teather R.M., Wood P.J.: Use of Congo red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from the bovine rumen. Appl.Environ.Microbiol.43, 777–780 (1982).

    CAS  PubMed  Google Scholar 

  • Wallace R.J., Joblin K.N.: Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol.Lett.29, 19–25 (1985).

    Article  CAS  Google Scholar 

  • Weinberg Z.G., Muck R.E.: New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol.Rev.19, 53–68 (1996).

    Article  CAS  Google Scholar 

  • Williams A.G., Orpin C.G.: Glycoside hydrolase enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix frontalis, Piromonas communis and an unidentified isolate grown on a range of carbohydrate substrates. Can. J.Microbiol.33, 427–434 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Woyengo T.A., Guenter W., Sands J.S., Nyachoti C.M., Mirza M.A.: Nutrient utilization and performance responses of broilers fed a wheat-based supplemented with phytase and xylanase alone or in combination. Anim.Feed Sci.Technol.146, 113–123 (2008).

    Article  CAS  Google Scholar 

  • Wyckoff H.A., Whitehead T.R.: Improved electroporation protocol and vectors for Streptococcus bovis. World J.Microbiol.Biotechnol.13, 269–272 (1997).

    Article  CAS  Google Scholar 

  • Zhu Y., Nishino N., Kishida Y., Uchida S.: Ensiling characteristics and ruminal degradation of Italian ryegrass and lucerne silages treated with cell wall degrading enzymes. J.Sci.Food Agric.79, 1987–1992 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ozkose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozkose, E., Akyol, I., Kar, B. et al. Expression of fungal cellulase gene in Lactococcus lactis to construct novel recombinant silage inoculants. Folia Microbiol 54, 335–342 (2009). https://doi.org/10.1007/s12223-009-0043-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-009-0043-4

Keywords

Navigation