Skip to main content
Log in

Rhodiola rosea: main features and its beneficial properties

  • Research Paper
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Medicinal plants have always been prescribed around the world with therapeutic purposes for various diseases and disorders related to their profile of biologically active substances and health-promoting effects. Meantime, Rhodiola rosea has been of particular importance among physicians, researchers and the general public. Accordingly, the present perspective aimed to explore the beneficial effects of this plant by focusing on in vitro and in vivo studies, and nutritional effects. The current work also provides a comprehensive analysis of the Rhodiola rosea studies in the literature throughout a quantitative literature research analysis approach. The literature search was carried out by means of the Scopus database to retrieve Rhodiola rosea-related publications. VOSviewer software (v.1.6.16, 2020) was used to extract and elaborate bibliometric data. 958 publications ranging from 1966 to 2021 were given by the literature search. Technological prospecting for patents was also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamczak A, Buchwald W, Gryszczynska A (2016) Biometric features and content of phenolic compounds of roseroot (Rhodiola rosea L.). Acta Soc Bot Pol. https://doi.org/10.5586/asbp.3500

    Article  Google Scholar 

  • Kelly GS (2001) Rhodiola rosea: a possible plant adaptogen. Altern Med Rev 6:293–302

    CAS  Google Scholar 

  • Alperth F, Turek I, Weiss S, Vogt D, Bucar F (2019) Qualitative and quantitative analysis of different Rhodiola rosea rhizome extracts by UHPLC-DAD-ESI-MSn. Sci Pharm 2:8

    Google Scholar 

  • Amsterdam JD, Panossian AG (2016) Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine 7:770–783

    Google Scholar 

  • Anheyer D, Schröter M, Dobos G, Cramer H (2021) Traditional use of drugs from Rhodiola rosea (roseroot, or arctic root). A medical-historical review | [Traditionelle Nutzung von Arzneimitteln aus Rhodiola rosea (Rosenwurz)]. Zeitschrift Fur Phytotherapie 42(6):280–291

    Google Scholar 

  • Atanasov AG, Zotchev SB, Dirsch VM, C.T., Supuran, (2021) Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov 3:200–216

    Google Scholar 

  • Borgonetti V, Governa P, Biagi M, Dalia P, Corsi L (2020) Rhodiola rosea L. modulates inflammatory processes in a CRH-activated BV2 cell model. Phytomedicine 68:153–143

    Google Scholar 

  • Vladimirovich LV, Vikentevich SV, Fedorovich RY, Nikolaevich BA , Anatolevich KV, Ulangazievna UR, Bakhlauletovich SD, Erbolatovna IS (2020) Method for production of enriched honey. RU0002738893. Submetida em 09 de janeiro de 2020. Publicada em 18 de dezembro de 2020. https://patentscope.wipo.int/search/en/detail.jsf?docId=RU314043559&tab=NATIONALBIBLIO&_cid=P10-KS4R3Y-14859-1

  • Chang X, Luo F, Jiang W, Zhu L, Gao J, He H, Wei T, Gong S, Yan T (2015) Protective activity of salidroside against ethanol-induced gastric ulcer via the MAPK/NF-κB pathway in vivo and in vitro. Int Immunopharmacol 1:604–615

    Google Scholar 

  • Chen XF, Li XL, Yang M, Song Y, Zhang Y (2018) Osteoprotective effects of salidroside in ovariectomized mice and diabetic mice. Eur J Pharmacol 819:281–288

    CAS  Google Scholar 

  • Chiang HM, Chen HC, Wu CS, Wu PY, Wen KC (2015) Rhodiola plants: chemistry and biological activity. J Food Drug Anal 3:359–369

    Google Scholar 

  • Chung V, Ho L, Leung TH, Wong C (2021) Designing delivery models of traditional and complementary medicine services: a review of international experiences. Br Med Bull 137(1):70–81. https://doi.org/10.1093/bmb/ldaa046

    Article  Google Scholar 

  • Concerto C, Infortuna C, Muscatello MRA, Bruno A, Zoccali R, Chusid E, Aguglia E, Battaglia F (2018) Exploring the effect of adaptogenic Rhodiola rosea extract on neuroplasticity in humans. Complement Thera Med 41:141–146

    Google Scholar 

  • Coors A, Brosch M, Kahl E, Khalil R, Michels B, Laub A, Franke K, Gerber B, Fendt M (2019) Rhodiola rosea root extract has antipsychotic-like effects in rodent models of sensorimotor gating. J Ethnopharmacol 235:320–328

    CAS  Google Scholar 

  • Cropley M, Banks AP, Boyle J (2015) The effects of Rhodiola rosea L. extract on anxiety, stress, cognition and other mood symptoms. Phytother Res 12:1934–1939

    Google Scholar 

  • Cui H, Liu X, Zhang J, Zhang K, Yao D, Dong S, Feng S, Yang L, Li Y, Wang H, Huang J (2021) Rhodiola rosea L. attenuates cigarette smoke and lipopolysaccharide-induced COPD in rats via inflammation inhibition and antioxidant and antifibrosis pathways. Evidence-Based Complement Alternat Med 2:1–18

    Google Scholar 

  • Daliu P, Santini A, Novellino E (2019) From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev Clin Pharmacol 1:1–7

    Google Scholar 

  • Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H (2000) Rhodiola rosea in stress induced fatigue—a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 5:365–371

    Google Scholar 

  • Döring K, Langeder J, Duwe S, Tahir A, Grienke U, Rollinger JM, Schmidtk M (2022) Insights into the direct anti-influenza virus mode of action of Rhodiola rosea. Phytomedicine 96:153895

    Google Scholar 

  • Durazzo A, Daddezio L, Camilli E, Piccinelli R, Turrini A, Marletta L, Marconi S, Lucarini M, Lisciani S, Gabrielli P, Gambelli L (2018) From plant compounds to botanicals and back: a current snapshot. Molecules 8:1844

    Google Scholar 

  • Durazzo A, Camilli E, D’Addezio L, Piccinelli R, Mantur-Vierendeel A, Marletta L, Finglas P, Turrini A, Sette S (2020) Development of dietary supplement label database in Italy: focus of FoodEx2 coding. Nutrients 1:89

    Google Scholar 

  • Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, Severino P, Zaccardelli M, Souto EB, Santini A (2021) Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. Rend Fis Acc Lincei. https://doi.org/10.1007/s12210-021-01003-2

    Article  Google Scholar 

  • Fan XJ, Wang Y, Wang L, Zhu M (2016) Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep 6:3559–3567

    Google Scholar 

  • Filonova GL et al (2005) Vegetable concentrate "zhiznedar-2". RU02248139. Submetida em 20 de novembro de 2003. Publicada em 20 de março de 2005. https://patentscope.wipo.int/search/en/detail.jsf?docId=RU29431360&_cid=P10-KS4QH6-07181-1

  • Fisch CO, Block JH, Sandner PG (2016) Chinese university patents: quantity, quality, and the role of subsidy programs. J Technol Transf 41:60–84

    Google Scholar 

  • Gao L, Wu C, Liao Y, Wang J (2020) Antidepressants effects of Rhodiola capsule combined with sertraline for major depressive disorder: a randomized double-blind placebo-controlled clinical trial. J Affect Disord 265:99–103

    CAS  Google Scholar 

  • György Z, Hohtola A (2009) Production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea through biotransformation of cinnamyl alcohol. In: Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, Totowa, pp 305–312

    Google Scholar 

  • György Z, Tóth EG, Incze N, Molnár B, Höhn M (2018) Intercontinental migration pattern and genetic differentiation of arctic-alpine Rhodiola rosea L.: a chloroplast DNA survey. Ecol Evol 8:11508–11521

    Google Scholar 

  • Khnykina LA, Zotova MI (1966) To the pharmacognostic study of Rhodiola rosea. Aptechn Delo 6:34–38

    Google Scholar 

  • Koop T, Dienel A, Heldmann M, Münte TF (2020) Effects of a Rhodiola rosea extract on mental resource allocation and attention: an event-related potential dual task study. Phytother Res 12:3287–3297

    Google Scholar 

  • Lekomtseva Y, Zhukova L, Wacker A (2017) Rhodiola rosea in subjects with prolonged or chronic fatigue symptoms: results of an open-label clinical trial. Complement Med Res 1:46–52

    Google Scholar 

  • Li L, Sapkota M, Kim SW, Soh Y (2015) Herbacetin inhibits inducible nitric oxide synthase via JNK and nuclear factor-κB in LPS-stimulated RAW264. 7 cells. Eur J Pharmacol 765:115–123

    CAS  Google Scholar 

  • Li Y, Pham V, Bui M, Song L, Wu C, Walia A, Uchio E, Smith-Liu F, Zi X (2017) Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. Curr Pharmacol Reports 3:384–395

    CAS  Google Scholar 

  • Limanaqi F, Biagioni F, Busceti CL, Polzella M, Fabrizi C, Fornai F (2020) Potential antidepressant effects of Scutellaria baicalensis, Hericium erinaceus and Rhodiola rosea. Antioxidants 9:234

    CAS  Google Scholar 

  • Liu X, Wen S, Yan F, Liu K, Liu L, Wang L, Zhao S, Ji X (2018) Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflamm 15:1–11

    Google Scholar 

  • Lucarini M, Durazzo A, Lombardi-Boccia G, Souto EB, Cecchini F, Santini A (2021) Wine polyphenols and health: quantitative research literature analysis. Appl Sci 11:4762

    CAS  Google Scholar 

  • Ma GP, Zheng Q, Xu MB, Zhou XL, Lu L, Li ZX, Zheng GQ (2018) Rhodiola rosea L. improves learning and memory function: preclinical evidence and possible mechanisms. Front Pharmacol 9:1415

    CAS  Google Scholar 

  • Marchev AS, Dinkova-Kostova AT, György Z, Mirmazloum I, Aneva IY, Georgiev MI (2016) Rhodiola rosea L.: from golden root to green cell factories. Phytochem Rev 15(4):515–536. https://doi.org/10.1007/s11101-016-9453-5

    Article  CAS  Google Scholar 

  • Mirmazloum I, Ladányi M, Beinrohr L, Kiss-Bába E, Kiss A, György Z (2019) Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture. Int J Biol Macromol 136:847–858

    CAS  Google Scholar 

  • Nabavi SF, Braidy N, Orhan IE, Badiee A, Daglia M, Nabavi SM (2016) Rhodiola rosea L. and Alzheimer’s disease: from farm to pharmacy. Phytother Res. https://doi.org/10.1002/ptr.5569

    Article  Google Scholar 

  • Nikolaichuk H, Choma IM (2020) TLC screening in searching for active components in Rhodiola rosea L. roots. Annales Universitatis Mariae Curie-Sklodowska Sectio AA–Chemia 1:55–64

    Google Scholar 

  • Olennikov DN, Chirikova NK, Vasilieva AG, Fedorov IA (2020) LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: a comparative study with subterranean organs. Antioxidants 6:526

    Google Scholar 

  • Pagano E, Souto EB, Durazzo A, Sharifi-Rad J, Lucarini M, Souto SB, Salehi B, Zam W, Montanaro V, Lucariello G, Izzo AA (2021) Ginger (Zingiber officinale Roscoe) as a nutraceutical: focus on the metabolic, analgesic, and antiinflammatory effects. Phytother Res 5:2403–2417

    Google Scholar 

  • Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 7:481–493

    Google Scholar 

  • Panossian A, Hamm R, Wikman G, Efferth T (2014) Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine 11:1325–1348

    Google Scholar 

  • Priyanka G (2019) A review on Rhodiola rosea L.: an herb with anti-stress, anti-oxidant and anti-carcinogenic properties. J Med Plants Stud 4:278–281

    Google Scholar 

  • Pu WL, Zhang MY, Bai RY, Sun LK, Li WH, Yu YL, Zhang Y, Song L, Wang ZX, Peng YFY-F, Shi H (2020) Anti-inflammatory effects of Rhodiola rosea L: a review. Biomed Pharmacother 121:109–552

    Google Scholar 

  • Qi Z, Qi S, Ling L, Lv J, Feng Z (2016) Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. Int Immunopharmacol 35:265–271

    CAS  Google Scholar 

  • Qiang M (2013) Rhodiola rosea fagopyrum tataricum biscuit and preparation method thereof. CN103168813. Submetida em 11 de março de 2013. Publicada em 16 de junho de 2013. https://patentscope.wipo.int/search/en/detail.jsf?docId=CN91947862&_cid=P10-KS230K-99932-1

  • Salehi B, Ata AV, Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z (2019a) Antidiabetic potential of medicinal plants and their active components. Biomolecules 9:551

    Google Scholar 

  • Salehi B, Sener B, Kilic M, Sharifi-Rad J, Naz R, Yousaf Z, Mudau FN, Fokou PVT, Ezzat SM, El Bishbishy MH, Taheri Y (2019b) Dioscorea plants: a genus rich in vital nutra-pharmaceuticals—a review. Iran J Pharmaceut Res 18:68

    CAS  Google Scholar 

  • Salehi B, Abu-Reidah LM, Sharopov F, Karazhan N, Sharifi-Rad J, Akram M, Daniyal M, Khan FS, Abbaass W, Zainab R, Carbone K (2021) Vicia plants—a comprehensive review on chemical composition and phytopharmacology. Phytother Res 2:790–809

    Google Scholar 

  • Santini A, Cammarata SM, Capone G, Ianaro A, Tenore GC, Pani L, Novellino E (2018) Nutraceuticals: opening the debate for a regulatory framework. Br J Clin Pharmacol 4:659–672

    Google Scholar 

  • Saunders D, Poppleton D, Struchkov A, Ireland R (2014) Analysis of five bioactive compounds from naturally occurring Rhodiola rosea in eastern Canada. Can J Plant Sci 4:741–748

    Google Scholar 

  • Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, Painuli S, Konovalov DA, Alfred MA, Kumar, Imran M, Nadeem M, Sawicka B, Pszczółkowski P, Bienia B, Barbaś P, Mahmud S, Durazzo A, Lucarini M, Santini A, Martorell M, Calina D (2021) Phytochemical constituents, biological activities, and health-promoting effects of the Melissa officinalis. Oxidative Med Cell Longevity 2021:6584693. https://doi.org/10.1155/2021/6584693

    Article  Google Scholar 

  • Spasov AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV (2000) A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 7:85–89

    CAS  Google Scholar 

  • Sun AQ, Ju XL (2021) Advances in research on anticancer properties of salidroside. Chin J Integr Med 2:153–160

    Google Scholar 

  • Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2:523–538

    Google Scholar 

  • Van Eck NJ and Waltman L (2011) Text mining and visualization using VOSviewer. arXiv preprint arXiv

  • Waltman L, Van Eck NJ, Noyons EC (2010) A unified approach to mapping and clustering of bibliometric networks. J Informet 4:629–635

    Google Scholar 

  • WHO Global Report On Traditional And Complementary Medicine 2019. Available at: https://www.who.int/traditional-complementary-integrative-medicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019.pdf

  • Xin T, Li X, Yao H, Lin Y, Ma X, Cheng R, Song J, Ni L, Fan C, Chen S (2015) Survey of commercial Rhodiola products revealed species diversity and potential safety issues. Sci Rep 5:1–5

    Google Scholar 

  • Xu ZW, Chen X, Jin XH, Meng XY, Zhou X, Fan FX, Mao SY, Wang Y, Zhang WC, Shan NN, Li YM (2016) SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics 130:211–220

    CAS  Google Scholar 

  • Yang DW, Kang OH, Lee YS, Han SH, Lee SW, Cha SW, Seo YS, Mun SH, Gong R, Shin DW, Kwon DY (2016) Anti-inflammatory effect of salidroside on phorbol-12-myristate-13-acetate plus A23187-mediated inflammation in HMC-1 cells. Int J Mol Med 6:1864–1870

    Google Scholar 

  • Yang L, Yu Y, Zhang Q, Li X, Zhang C, Mao T, Liu S, Tian Z (2019) Anti-gastric cancer effect of Salidroside through elevating miR-99a expression. Artif Cells Nanomed Biotechnol 1:3500–3510

    Google Scholar 

  • Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel-Daim MM, Atanasov AG (2019) Antioxidants: scientific literature landscape analysis. Oxidative Med Cell Longevity. https://doi.org/10.1155/2019/8278454

    Article  Google Scholar 

  • Yeung AWK, Souto EB, Durazzo A, Lucarini M, Novellino E, Tewari D, Wang D, Atanasov AG, Santini A (2020) Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Curr Res Biotechnol 2:53–63

    Google Scholar 

  • Yuetong L, Shangzhu L, Qinglin H, Pingping H (2020) Salidroside inhibits proliferation, migration and invasion of human pancreatic cancer PANC1 and SW1990 cells through the AKT and ERK signaling pathway. Die Pharmazie-an Int J Pharmaceut Sci 8:385–388

    Google Scholar 

  • Zaohua Z and Chu J (2000) Rhodiola rosea injection for treating angina pectoris of coronary heart disease. CN1265905. Submetida em 08 de março de 1999. Publicada em 1 3 de setembro de 2000. https://patentscope.wipo.int/search/en/detail.jsf?docId=CN82458941&_cid=P10-KS4OT2-83342-1

  • Zhang L, Yu H, Sun Y, Lin X, Chen B, Tan C, Cao G, Wang Z (2007) Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 564:18–25

    CAS  Google Scholar 

  • Zhang B, Li Q, Chu X, Sun S, Chen S (2016) Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila model of Alzheimer’s disease. Transl Neurodegener 5:1–6

    Google Scholar 

  • Zhao G, Shi A, Fan Z, Du Y (2015) Salidroside inhibits the growth of human breast cancer in vitro and in vivo. Oncol Rep 5:2553–2560

    Google Scholar 

  • Zhao CC, Wu XY, Yi H, Chen R, Fan G (2021) The therapeutic effects and mechanisms of salidroside on cardiovascular and metabolic diseases: an updated review. Chem Biodivers 18(7):e2100033

    CAS  Google Scholar 

  • Zheng H, Qi S, Chen C (2018) Salidroside improves bone histomorphology and prevents bone loss in ovariectomized diabetic rats by upregulating the OPG/RANKL ratio. Molecules 9:2398

    Google Scholar 

  • Zheng T, Bian F, Chen L, Wang Q, Jin S (2019) Beneficial effects of rhodiola and salidroside in diabetes: potential role of AMP-activated protein kinase. Mol Diagnostic Therapeutics 4:489–498

    Google Scholar 

  • Zhu X, Liu D, Wang Y, Dong M (2020) Salidroside suppresses nonsmall cell lung cancer cells proliferation and migration via microRNA-103-3p/Mzb1. Anticancer Drugs 7:663–671

    Google Scholar 

  • Zuo W, Yan F, Zhang B, Hu X, Mei D (2018) Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol 830:128–138

    CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made a substantial contribution to the writing and revision of work, and approved it for publication. All the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Alessandra Durazzo or Massimo Lucarini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durazzo, A., Lucarini, M., Nazhand, A. et al. Rhodiola rosea: main features and its beneficial properties. Rend. Fis. Acc. Lincei 33, 71–82 (2022). https://doi.org/10.1007/s12210-022-01055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-022-01055-y

Keywords

Navigation