Skip to main content

Advertisement

Log in

Extreme events in Venice and in the North Adriatic Sea: 28–29 October 2018

  • Coastal Protection
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Predictions and monitoring of sea level events have always been very challenging issues aimed at protecting, enhancing and improving the marine environment, especially in the North Adriatic Sea and in the Venice Lagoon, that are increasingly exposed to the flooding risk from storm surges, well known as Acqua alta phenomenon. In this framework, a deep analysis of extreme events has been developed, to characterize this storm surge in terms of its rareness and intensity; the Generalised Pareto Distribution and the generalised extreme values methods have been applied to obtain sea level return period and return level. Moreover, the operational sea level forecasting system running at ISPRA in the framework of the SIMM—Sistema Idro-Meteo-Mare is here presented; it is based on two different methods, the deterministic hydrodynamic finite elements numerical model SHYFEM and a statistical one. It provides forecasts up to 96 h depending on the spatial resolution and input data configuration. In this work, a deep analysis of the 29th October 2018 storm surge event and the application of the described system are presented. This integrated system is, in fact, a very useful tool to support the management of the marine environment and its resource, in particular regarding the coastal zone planning, protection and management, and to support the mitigation and rescue actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bajo M, Zampato L, Umgiesser G, Cucco A, Canestrelli P (2007) A finite element operational model for storm surge prediction in Venice. Estuar Coast Shelf Sci 75:236–249. https://doi.org/10.1016/j.ecss.2007.02.025

    Article  Google Scholar 

  • Bajo M, Coraci E, Umgiesser G (2012) Sviluppo di un sistema operativo, basato su tecniche di assimilazione dati in tempo reale, per la previsione della marea reale presso le stazioni di riferimento della Rete mareografica della laguna di Venezia e del litorale Nord-Adriatico (RMLV), Rapporto tecnico finale, CNR-ISMAR, p 34

  • Baldin G, Crosato F (2017) L’innalzamento del livello medio del mare a Venezia: eustatismo e subsidenza. ISPRA, Quaderni, Ricerca Marina 10/2017

  • Barbano A, Braca G, Bussettini M, Dessí B, Inghilesi R, Lastoria B, Monacelli G, Morucci S, Piva F, Sinapi L, Spizzichino D (2012) Proposta metodologica per l’aggiornamento delle mappe di pericolosità e di rischio—Attuazione della Direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi da alluvioni, ISPRA, Manuali e Linee Guida 82/2012, Publisher: ISPRA—ISBN: 978-88-448-0571-5

  • Buzzi A, Fantini M, Malguzzi P, Nerozzi F (1994) Validation of a limited area model in cases of Mediterranean cyclogenesis: surface fields and precipitation scores. Meteor Atmos Phys 53:53–67

    Article  Google Scholar 

  • Carbognin L, Teatini P, Tosi L (2004) Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. J Mar Syst 51:345–353. https://doi.org/10.1016/j.jmarsys.2004.05.021

    Article  Google Scholar 

  • Casaioli M, Lastoria B, Mariani S, Bussettini M (2010) Evaluating the improvements of the BOLAM model of the ISPRA Sistema Idro–Meteo–Mare on the December 2008 flood event in Rome. Adv Geosci 25:135–141

    Article  Google Scholar 

  • Casaioli M, Mariani S, Malguzzi P, Speranza A (2013) Factors affecting the quality of QPF: a multi-method verification of multi-configuration BOLAM reforecasts against MAP D-PHASE observations. Meteorol Appl 20:150–163

    Article  Google Scholar 

  • Casaioli M, Catini F, Inghilesi R, Lanucara P, Malguzzi P, Mariani S, Orasi A (2014) An operational forecasting system for the meteorological and marine conditions in Mediterranean regional and coastal areas. Adv Sci Res 11:11–23

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL a seasonal—trend decomposition procedure based in Loess. J Off Stat 6(1):3–73

    Google Scholar 

  • Coraci E (2014) Valutazione su un anno di operatività del modello deterministico per la previsione della marea reale presso le stazioni di riferimento della Rete mareografica della laguna di Venezia e del litorale Nord-Adriatico. ISPRA Technical Report, available at https://www.venezia.isprambiente.it/ricerche

  • Coraci E, Crosato F, Morucci S, Ferla M (2018) Gli eventi meteo-marini del 28 e 29 ottobre 2018 nel Nord Adriatico. ISPRA Technical Report, available at https://www.venezia.isprambiente.it/bollettino#Analisi%20eventi%20di%20marea

  • Demarte M, Morucci S, Repetti L, Orasi A (2007) Il mareografo fondamentale di Genova: analisi delle variazioni del livello del mare dal 1884 al 2006, Pubblicazione IIM—APAT

  • Foreman MG (1977) Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Pacific Marine Science Report 77–10

  • Giorgi M, Stocchino C (1965) Les constantes harmoniques de marée du port de Genes et leurs variations, Atti XIV Convegno dell’Associazione Geofisica Italiana, pp 310–324

  • IOC (2006) Manual on sea level. Meas Interpret 4:28–34

    Google Scholar 

  • Malguzzi P, Tartaglione N (1999) An economical second- order advection scheme for numerical weather prediction. Quart J R Meteor Soc 125:2291–2303

    Article  Google Scholar 

  • Mariani S, Casaioli M (2018) Effects of model domain extent and horizontal grid size on contiguous rain area (CRA) analysis: A MesoVICT study. Meteorol Z 27(6):481–502. https://doi.org/10.1127/metz/2018/0897

    Article  Google Scholar 

  • Mariani S, Casaioli M, Malguzzi P (2014) Towards a new BOLAM-MOLOCH suite for the SIMM forecasting system: implementation of an optimised configuration for the HyMeX Special Observation Periods. Nat Hazards Earth Syst Sci Discuss 2:649–680. https://doi.org/10.5194/nhessd-2-649-2014

    Article  Google Scholar 

  • Mariani S, Casaioli M, Coraci E, Malguzzi P (2015) A new high-resolution BOLAM-MOLOCH suite for the SIMM forecasting system: assessment over two HyMeX intense observation periods. Nat Hazards Earth Syst Sci 15:1–24. https://doi.org/10.5194/nhess-15-1-2015

    Article  Google Scholar 

  • Masina M, Lamberti A (2013) A nonstationary analysis for the Northern Adriatic extreme sea levels. J Geophys Res Oceans 118:3999–4016

    Article  Google Scholar 

  • Morucci S, Inghilesi R, Orasi A, Nardone G (2012) Wave climate and extreme events analysis in the Central Mediterranean Sea. EGU 14:11664

    Google Scholar 

  • Morucci S, Nardone G, Picone M (2014) Extreme events and sea waves along Italian Coasts. EGU 16:12692

    Google Scholar 

  • Morucci S, Picone M, Nardone G, Arena G (2016) Tides and waves in the Central Mediterranean Sea. J Oper Oceanogr 9(Supplement 1):s10–s17

    Google Scholar 

  • Pugh DT (1987) Tides, surges and mean sea level. Wiley, Chichester

    Google Scholar 

  • Speranza A, Accadia C, Casaioli M, Mariani G, Monacelli G, Inghilesi R, Tartaglione N, Ruti PM, Carillo A, Bargagli A, Pisacane G, Valentinotti F, Lavagnini A (2004) POSEIDON: An integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area. Nuovo Cimento 27(4):329–345

    Google Scholar 

  • Speranza A, Accadia C, Mariani S, Casaioli M, Tartaglione N, Monacelli G, Ruti PM, Lavagnini A (2007) SIMM: an integrated forecasting system for the Mediterranean Area. Meteorol Appl 14:337–350

    Article  Google Scholar 

  • Tirozzi B, Bruschi A, Morucci S, Pittalis S (2003) Sistemi di diagnosi dello stato del mare in tempo reale e metodologie statistiche per l’analisi degli eventi estremi. Technical report, University of Study La Sapienza (Roma) and National Department for Technical Services (DSTN)

  • Tirozzi B, Puca S, Pittalis S, Bruschi A, Morucci S, Ferraro E, Corsini S (2005) Book: neural networks and time series. Birkhauser, Boston. https://doi.org/10.1007/0-8176-4459-8

    Book  Google Scholar 

  • Umgiesser G, MelakuCanu D, Cucco A, Solidoro C (2004) A finite element model for the Venice Lagoon. Development, set up, calibration and validation. J Mar Syst 51:123–145

    Article  Google Scholar 

  • Zampato L, Umgiesser G, Zecchetto S (2007) Sea level forecasting in Venice through high resolution meteorological fields. Estuar Coast Shelf Sci 75:223–235. https://doi.org/10.1016/j.ecss.2007.02.024

    Article  Google Scholar 

Download references

Acknowledgements

This work was technically and scientifically supported by S. Mariani and M. Casaioli (ISPRA) and we are grateful for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Morucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morucci, S., Coraci, E., Crosato, F. et al. Extreme events in Venice and in the North Adriatic Sea: 28–29 October 2018. Rend. Fis. Acc. Lincei 31, 113–122 (2020). https://doi.org/10.1007/s12210-020-00882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00882-1

Keywords

Navigation