Skip to main content

Advertisement

Log in

Regulation of mitochondrial respiration and ATP synthesis via cytochrome c oxidase

  • Current topics in Biology
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Cytochrome c oxidase (COX) represents the main oxygen acceptor for respiration of aerobic organisms. The energy of respiration is stored via oxidative phosphorylation (OxPhos) in ATP, the general energy intermediate in living cells, or released as heat. During evolution from bacteria to mammals the complexity of OxPhos regulation increased at COX by increasing the number of subunits, by expression of subunit isoforms which are specific for tissues, developmental stages, and oxygen concentrations, and by reversible phosphorylation. The essential function of the “supernumerary” subunits became evident in patients with mitochondrial disease related to COX-deficiency, based on mutations in these subunit genes. While the basic regulation of energy transduction in OxPhos was explained by the Mitchell theory, an additional regulation of respiration and ATP synthesis was discovered in eukaryotic organisms, based on reversible and membrane potential-independent inhibition of COX activity at high ATP/ADP ratios. So far, only some of the complex regulatory functions of nuclear-encoded subunits were uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Taken from Kadenbach et al. (2000)

Fig. 2

Taken from Ramzan et al. (2010)

Fig. 3

Taken from Helling et al. (2012)

Fig. 4

Taken from Kadenbach et al. (2010)

Similar content being viewed by others

References

  • Abdulhag UN, Soiferman D, Schueler-Furman O, Miller C, Shaag A, Elpeleg O, Edvardson S, Saada A (2015) Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet 23:159–164

    Article  CAS  Google Scholar 

  • Abrahams JP, Leslie AGW, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  Google Scholar 

  • Abu-Libdeh B, Douiev L, Amro S, Shahrour M, Ta-Shma A, Miller C, Elpeleg O, Saada A (2017) Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia. Eur J Hum Genet 25(10):1142–1146

    Article  CAS  Google Scholar 

  • Acin-Perez R, Salazar E, Brosel S, Yang H, Schon EA, Manfredi G (2009) Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med 1:392–406

    Article  CAS  Google Scholar 

  • Acin-Perez R, Gatti DL, Bai Y, Manfredi G (2011) Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab 13(6):712–719

    Article  CAS  Google Scholar 

  • Anthony G, Stroh A, Lottspeich F, Kadenbach B (1990) Different isozymes of cytochrome c oxidase are expressed in bovine smooth muscle and skeletal or heart muscle. FEBS Lett 277:97–100

    Article  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1997) Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome c oxidase. Eur J Biochem 249:350–354

    Article  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1999) Intramitochondrial ATP/ADP-ratios control cytochrome c oxidase activity allosterically. FEBS Lett 443:105–108

    Article  CAS  Google Scholar 

  • Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  CAS  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  CAS  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  Google Scholar 

  • Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landázuri MO, Enríquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386

    Article  CAS  Google Scholar 

  • Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–134

    Article  CAS  Google Scholar 

  • Boczonadi V, Giunta M, Lane M, Tulinius M, Schara U, Horvath R (2015) Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease. Int J Biochem Cell Biol 63:32–40

    Article  CAS  Google Scholar 

  • Brand MD (1990) The proton leak across the mitochondrial inner membrane. Biochim Biophys Acta 1018(2–3):128–133

    Article  CAS  Google Scholar 

  • Brand MD (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33(Pt 5):897–904

    Article  CAS  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  CAS  Google Scholar 

  • Chance B, Williams CM (1955) Respiratory enzymes in oxidative phosphorylation: III. The steady state. J Biol Chem 217:405–427

    Google Scholar 

  • Chang FW, Fan HC, Liu JM, Fan TP, Jing J, Yang CL, Hsu RJ (2017) Estrogen enhances the expression of the multidrug transporter gene ABCG2-increasing drug resistance of breast cancer cells through estrogen receptors. Int J Mol Sci 18(1):163

    Article  CAS  Google Scholar 

  • Chen WL, Kuo KT, Chou TY, Chen CL, Wang CH, Wei YH, Wang LS (2012) The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis. BMC Cancer 12:273

    Article  CAS  Google Scholar 

  • Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R, Chang YT, Jastroch M, Jacobs HT, Rustin P, Rak M (2018) Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol 16(1):e2003992

    Article  Google Scholar 

  • Costa LE, Reynafarje B, Lehninger AL (1984) Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow. J Biol Chem 259:4802–4811

    CAS  Google Scholar 

  • Dalmonte ME, Forte E, Genova ML, Giuffrè A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284(47):32331–32335

    Article  CAS  Google Scholar 

  • DiMauro S (2004) Mitochondrial medicine. Biochim Biophys Acta 1659:107–114

    Article  CAS  Google Scholar 

  • DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348(26):2656–2668

    Article  CAS  Google Scholar 

  • Dobson GP, Himmelreich U (2002) Heart design: free ADP scales with absolute mitochondrial and myofibrillar volumes from mouse to human. Biochim Biophys Acta 1553:261–267

    Article  CAS  Google Scholar 

  • Dröse S, Brandt U (2012) Molecular mechanism of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748:145–169

    Article  CAS  Google Scholar 

  • Fang JK, Prabu SK, Sepuri NB, Raza H, Anandatheerthavarada HK, Galati D, Spear J, Avadhani NG (2007) Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion. FEBS Lett 581(7):1302–1310

    Article  CAS  Google Scholar 

  • Ferguson-Miller S, Brautigan DL, Margoliash E (1978) Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem 253(1):149–159

    CAS  Google Scholar 

  • Fernandez-Vizarra E, Tiranti V, Zeviani M (2009) Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochim Biophys Acta 1793(1):200–211

    Article  CAS  Google Scholar 

  • Follmann K, Arnold S, Ferguson-Miller S, Kadenbach B (1998) Cytochrome c oxidase activity from eucaryotes but not from procaryotes is allosterically inhibited by ATP. Biochem Mol Biol Int 45:1047–1055

    CAS  Google Scholar 

  • Frank V, Kadenbach B (1996) Regulation of the H +/e− stoichiometry of cytochrome c oxidase from bovine heart by intraliposomal ATP/ADP ratios. FEBS Lett 382:121–124

    Article  CAS  Google Scholar 

  • From AHL, Zimmer SD, Michurski SP, Mohanakrishnan P, Ulstad VK, Thoma WJ, Ugurbil K (1990) Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 29:3731–3743

    Article  CAS  Google Scholar 

  • Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  CAS  Google Scholar 

  • Gao SP, Sun HF, Jiang HL, Li LD, Hu X, Xu XE, Jin W (2015) Loss of COX5B inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer. Oncotarget 6(41):43363–43374

    Google Scholar 

  • Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837(4):427–443

    Article  CAS  Google Scholar 

  • Genova ML, Lenaz G (2015) The interplay between respiratory supercomplexes and ROS in aging. Antioxid Redox Signal 23(3):208–238

    Article  CAS  Google Scholar 

  • Ghezzi D, Zeviani M (2012) Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106

    Article  CAS  Google Scholar 

  • Goldberg A, Wildman DE, Schmidt TR, Huttemann M, Goodman M, Weiss ML, Grossman LI (2003) Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates. Proc Natl Acad Sci USA 100(10):5873–5878

    Article  CAS  Google Scholar 

  • Groen AK, Wanders RJA, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

    CAS  Google Scholar 

  • Hallmann K, Kudin AP, Zsurka G, Kornblum C, Reimann J, Stüve B, Waltz S, Hattingen E, Thiele H, Nürnberg P, Rüb C, Voos W, Kopatz J, Neumann H, Kunz WS (2016) Loss of the smallest subunit of cytochrome c oxidase, COX8A, causes Leigh-like syndrome and epilepsy. Brain 139(Pt 2):338–345

    Article  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    Article  CAS  Google Scholar 

  • Hayashi T, Asano Y, Shintani Y, Aoyama H, Kioka H, Tsukamoto O, Hikita M, Shinzawa-Itoh K, Takafuji K, Higo S, Kato H, Yamazaki S, Matsuoka K, Nakano A, Asanuma H, Asakura M, Minamino T, Goto Y, Ogura T, Kitakaze M, Komuro I, Sakata Y, Tsukihara T, Yoshikawa S, Takashima S (2015) Higd1a is a positive regulator of cytochrome c oxidase. Proc Natl Acad Sci USA 112(5):1553–1558

    Article  CAS  Google Scholar 

  • Helling S, Hüttemann M, Ramzan R, Kim SH, Lee I, Müller T, Langenfeld E, Meyer HE, Kadenbach B, Vogt S, Marcus K (2012) Multiple phosphorylations of cytochrome c oxidase and their functions. Proteomics 12:950–959

    Article  CAS  Google Scholar 

  • Herrmann PC, Gillespie JW, Charboneau L, Bichsel VE, Paweletz CP, Calvert VS, Kohn EC, Emmert-Buck MR, Liotta LA, Petricoin EF 3rd (2003) Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics 3(9):1801–1810

    Article  CAS  Google Scholar 

  • Horvat S, Beyer C, Arnold S (2006) Effect of hypoxia on the transcription pattern of subunit isoforms and the kinetics of cytochrome c oxidase in cortical astrocytes and cerebellar neurons. J Neurochem 99(3):937–951

    Article  CAS  Google Scholar 

  • Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440(7086):944–948

    Article  CAS  Google Scholar 

  • Hüttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267:111–123

    Article  Google Scholar 

  • Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40:445–456

    Article  CAS  Google Scholar 

  • Hwang HJ, Lynn SG, Vengellur A, Saini Y, Grier EA, Ferguson-Miller SM, LaPres JJ (2015) Hypoxia inducible factors modulate mitochondrial oxygen consumption and transcriptional regulation of nuclear-encoded electron transport chain genes. Biochemistry 54:3739–3748

    Article  CAS  Google Scholar 

  • Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S (2013) A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 4:2147

    Article  CAS  Google Scholar 

  • Indrieri A, van Rahden VA, Tiranti V, Morleo M, Iaconis D, Tammaro R, D’Amato I, Conte I, Maystadt I, Demuth S, Zvulunov A, Kutsche K, Zeviani M, Franco B (2012) Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 91(5):942–949

    Article  CAS  Google Scholar 

  • Ishigami I, Hikita M, Egawa T, Yeh SR, Rousseau DL (2015) Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy. Biochim Biophys Acta 1847(1):98–108

    Article  CAS  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    Article  CAS  Google Scholar 

  • Kadenbach B (2017) Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins. Role of NDUFA4. Trends Endocrin Metab 28:761–770

    Article  CAS  Google Scholar 

  • Kadenbach B, Arnold S (1999) A second mechanism of respiratory control. FEBS Lett 447:131–134

    Article  CAS  Google Scholar 

  • Kadenbach B, Hüttemann M (2015) The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 24:64–76

    Article  CAS  Google Scholar 

  • Kadenbach B, Ungibauer M, Jarausch J, Büge U, Kuhn-Nentwig L (1983) The complexity of respiratory complexes. Trends Biochem Sci 8:398–400

    Article  CAS  Google Scholar 

  • Kadenbach B, Stroh A, Becker A, Eckerskorn C, Lottspeich F (1990) Tissue- and species-specific expression of cytochrome c oxidase isozymes in vertebrates. Biochim Biophys Acta 1015:368–372

    Article  CAS  Google Scholar 

  • Kadenbach B, Hüttemann M, Arnold S, Lee I, Mühlenbein N, Bender E (2000) Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 29:211–221

    Article  CAS  Google Scholar 

  • Kadenbach B, Ramzan R, Wen L, Vogt S (2010) New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta 1800:205–212

    Article  CAS  Google Scholar 

  • Kadenbach B, Ramzan R, Vogt S (2013) High efficiency versus maximal performance—the cause of oxidative stress in eukaryotes. A hypothesis. Mitochondrion 13:1–6

    Article  CAS  Google Scholar 

  • Kaim G, Dimroth P (1999) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J 18:4118–4127

    Article  CAS  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  Google Scholar 

  • Kim SE, Mori R, Komatsu T, Chiba T, Hayashi H, Park S, Sugawa MD, Dencher NA, Shimokawa I (2015) Upregulation of cytochrome c oxidase subunit 6b1 (Cox6b1) and formation of mitochondrial supercomplexes: implication of Cox6b1 in the effect of calorie restriction. AGE 37:45

    Article  CAS  Google Scholar 

  • Kirichenko A, Vygodina T, Mkrtchyan HM, Konstantinov A (1998) Specific cation binding site in mammalian cytochrome oxidase. FEBS Lett 423(3):329–333

    Article  CAS  Google Scholar 

  • Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021

    Article  CAS  Google Scholar 

  • Kocha KM, Reilly K, Porplycia DSM, McDonald J, Snider T, Moyes CD (2015) Evolution of the oxygen sensitivity of cytochrome c oxidase subunit 4. Am J Physiol Regul Integr Comp Physiol 308:R305–R320

    Article  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  Google Scholar 

  • Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, Navas P, Cruz R, Carracedo A, López-Otín C, Pérez-Martos A, Fernández-Silva P, Fernández-Vizarra E, Enríquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1571

    Article  CAS  Google Scholar 

  • Lardy HA, Wellman H (1952) Oxidative phosphorylation: role of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem 195:215–224

    CAS  Google Scholar 

  • Lee I, Hüttemann M (2014) Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 1842:1579–1586

    Article  CAS  Google Scholar 

  • Lee I, Kadenbach B (2001) Palmitate decreases proton pumping of liver-type cytochrome c oxidase. Eur J Biochem 268:6329–6334

    Article  CAS  Google Scholar 

  • Lee I, Bender E, Arnold S, Kadenbach B (2001) Minireview-hypothesis. New control of mitochondrial membrane potential and ROS-formation. Biol Chem 382:1629–1633

    Article  CAS  Google Scholar 

  • Lee I, Bender E, Kadenbach B (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234(235):63–70

    Article  Google Scholar 

  • Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Hüttemann M (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100

    Article  CAS  Google Scholar 

  • Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS (2012) Wnt/Snail signaling regulates cytochrome c oxidase and glucose metabolism. Cancer Res 72(14):3607–3617

    Article  CAS  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52(3–5):159–164

    Article  CAS  Google Scholar 

  • Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537(7622):644–648

    Article  CAS  Google Scholar 

  • Liko I, Degiacomi MT, Mohammed S, Yoshikawa S, Schmidt C, Robinson CV (2016) Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. Proc Natl Acad Sci USA 113(29):8230–8235

    Article  CAS  Google Scholar 

  • Lincoln AJ, Donat N, Palmer G, Prochaska LJ (2003) Site-specific antibodies against hydrophilic domains of subunit III of bovine heart cytochrome c oxidase affect enzyme function. Arch Biochem Biophys 416(1):81–91

    Article  CAS  Google Scholar 

  • Linder D, Freund R, Kadenbach B (1995) Species-specific expression of cytochrome c oxidase isozymes. Comp Biochem Physiol 112B:461–469

    Article  CAS  Google Scholar 

  • Little AG, Lau G, Mathers KE, Leary SC, Moyes CD (2017) Comparative biochemistry of cytochrome c oxidase in animals. Comp Biochem Physiol B Biochem Mol Biol. https://doi.org/10.1016/j.cbpb.2017.11.005

  • Liu SS (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17:259–272

    Article  CAS  Google Scholar 

  • Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B (2001) Cytochrome c oxidase and the regulation of oxidative phosphorylation. ChemBioChem 2:392–403

    Article  CAS  Google Scholar 

  • Marchi S, Pinton P (2014) The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592(5):829–839

    Article  CAS  Google Scholar 

  • Massa V, Fernandez-Vizarra E, Alshahwan S, Bakhsh E, Goffrini P, Ferrero I, Mereghetti P, D’Adamo P, Gasparini P, Zeviani M (2008) Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet 82(6):1281–1289

    Article  CAS  Google Scholar 

  • Merle P, Kadenbach B (1980) The subunit composition of mammalian cytochrome c oxidase. Eur J Biochem 105:499–507

    Article  CAS  Google Scholar 

  • Mishra N, Timilsina U, Ghimire D, Dubey RC, Gaur R (2017) Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells. Biochem Biophys Res Commun 482(4):713–719

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  Google Scholar 

  • Murphy MP, Brown GC, Brand MD (1985) Thermodynamic limits to the stoichiometry of H + pumping by mitochondrial cytochrome oxidase. FEBS Lett 187:16–20

    Article  CAS  Google Scholar 

  • Napiwotzki J, Kadenbach B (1998) Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem 379:335–339

    Article  CAS  Google Scholar 

  • Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B (1997) ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem 378:1013–1021

    Article  CAS  Google Scholar 

  • Nicholls DG (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem 50:305–315

    Article  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics, 2nd edn. Academic Press Limited, London, pp 82–87

    Google Scholar 

  • Oliva CR, Markert T, Gillespie GY, Griguer CE (2015) Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas. Oncotarget 6:4330–4344

    Article  Google Scholar 

  • Palmieri F, Pierri CL (2010) Mitochondrial metabolite transport. Essays Biochem 47:37–52

    Article  CAS  Google Scholar 

  • Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208

    Article  CAS  Google Scholar 

  • Pereira-da-Silva L, Sherman M, Lundin M, Baltscheffsky H (1993) Inorganic pyrophosphate gives a membrane potential in yeast mitochondria, as measured with the permeant cation tetraphenylphosphonium. Arch Biochem Biophys 304(2):310–313

    Article  CAS  Google Scholar 

  • Phull AR, Nasir B, Haq IU, Kim SJ (2018) Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 281:121–136

    Article  CAS  Google Scholar 

  • Planques Y, Capitanio N, Capitanio G, De Nitto E, Villani G, Papa S (1989) Role of supernumerary subunits in mitochondrial cytochrome c oxidase. FEBS Lett 258(2):285–288

    Article  CAS  Google Scholar 

  • Porter RK (2012) Studies on the function and regulation of mitochondrial uncoupling proteins. Adv Exp Med Biol 748:171–184

    Article  CAS  Google Scholar 

  • Potthast AB, Heuer T, Warneke SJ, Das AM (2017) Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency. PLoS ONE 12(10):e0186517

    Article  CAS  Google Scholar 

  • Quintens R, Singh S, Lemaire K, De Bock K, Granvik M, Schraenen A, Vroegrijk IO, Costa V, Van Noten P, Lambrechts D, Lehnert S, Van Lommel L, Thorrez L, De Faudeur G, Romijn JA, Shelton JM, Scorrano L, Lijnen HR, Voshol PJ, Carmeliet P, Mammen PP, Schuit F (2013) Mice deficient in the respiratory chain gene Cox6a2 are protected against high-fat diet-induced obesity and insulin resistance. PLoS ONE 8(2):e56719

    Article  CAS  Google Scholar 

  • Radford NB, Wan B, Richman A, Szczepaniak LS, Li J-L, Li K, Pfeiffer K, Schägger D, Garry DJ, Moreadith RW (2002) Cardiac dysfunction in mice lacking cytochrome-c oxidase subunit VIaH. Am J Physiol Heart Circ Physiol 282:H726–H733

    Article  CAS  Google Scholar 

  • Rak M, Bénit P, Chrétien D, Bouchereau J, Schiff M, El-Khoury R, Tzagoloff A, Rustin P (2016) Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond) 130(6):393–407

    Article  CAS  Google Scholar 

  • Ramzan R, Staniek K, Kadenbach B, Vogt S (2010) Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta 1797(9):1672–1680

    Article  CAS  Google Scholar 

  • Ramzan R, Weber P, Kadenbach B, Vogt S (2012) Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol 748:265–281

    Article  CAS  Google Scholar 

  • Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S (2017) Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem 398(7):737–750

    Article  CAS  Google Scholar 

  • Reynafarje B, Alexandre A, Davies P, Lehninger AL (1982) Proton translocation stoichiometry of cytochrome oxidase: use of a fast-responding oxygen electrode. Proc Natl Acad Sci USA 79:7218–7222

    Article  CAS  Google Scholar 

  • Reynafarje B, Costa LE, Lehninger AL (1986) Upper and lower limits of the proton stoichiometry of cytochrome c oxidation in rat liver mitoplasts. J Biol Chem 261:8254–8262

    CAS  Google Scholar 

  • Rottenberg H, Covian R, Trumpower BL (2009) Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J Biol Chem 284:19203–19210

    Article  CAS  Google Scholar 

  • Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A, Federici M, Dinsdale D, Knight RA, Melino G, Mak TW (2012) TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev 26(18):2009–2014

    Article  CAS  Google Scholar 

  • Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14(11):709–721

    Article  CAS  Google Scholar 

  • Salje J, Ludwig B, Richter OM (2005) Is a third proton-conducting pathway operative in bacterial cytochrome c oxidase? Biochem Soc Trans 33:829–831

    Article  CAS  Google Scholar 

  • Samavati L, Icksoo Lee I, Mathes I, Lottspeich F, Hüttemann M (2008) Tumor necrosis factor α inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J Biol Chem 283:21134–21144

    Article  CAS  Google Scholar 

  • Saraste M, Penttilä T, Wikström M (1981) Quaternary structure of bovine cytochrome oxidase. Eur J Biochem 115(2):261–268

    Article  CAS  Google Scholar 

  • Schiffer TA, Peleli M, Sundqvist ML, Ekblom B, Lundberg JO, Weitzberg E, Larsen FJ (2016) Control of human energy expenditure by cytochrome c oxidase subunit IV-2. Am J Physiol Cell Physiol 311(3):C452–C461

    Article  Google Scholar 

  • Schlerf A, Droste M, Winter M, Kadenbach B (1988) Characterization of two different genes (cDNA) for cytochrome c oxidase subunit VIa from heart and liver of the rat. EMBO J 7:2387–2391

    Article  CAS  Google Scholar 

  • Schwenke W-D, Soboll S, Seitz HJ, Sies H (1981) Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo. Biochem J 200:405–408

    Article  CAS  Google Scholar 

  • Sedlák E, Robinson NC (2015) Destabilization of the quaternary structure of bovine heart cytochrome c oxidase upon removal of tightly bound cardiolipin. Biochemistry 54(36):5569–5577

    Article  CAS  Google Scholar 

  • Semenza GI (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813(7):1263–1268

    Article  CAS  Google Scholar 

  • Semenza GL (2017) Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J 36(3):252–259

    Article  CAS  Google Scholar 

  • Sepuri NBV, Angireddy R, Srinivasan S, Guha M, Spear J, Lu B, Anandatheerthavarada HK, Suzuki CK, Avadhani NG (2017) Mitochondrial LON protease-dependent degradation of cytochrome c oxidase subunits under hypoxia and myocardial ischemia. BBA Bioenerg 1858:519–528

    Article  CAS  Google Scholar 

  • Setty OH, Shrager RI, Bunow B, Reynafarje B, Lehninger AL, Hendler RW (1986) Direct measurement of the initial proton extrusion to oxygen uptake ratio accompanying succinate oxidation by rat liver mitochondria. Biophys J 50:391–404

    Article  CAS  Google Scholar 

  • Sharma V, Wikström M (2016) The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. Biochim Biophys Acta 1857(8):1111–1115

    Article  CAS  Google Scholar 

  • Shteyer E, Saada A, Shaag A, Al-Hijawi FA, Kidess R, Revel-Vilk S, Elpeleg O (2009) Exocrine pancreatic insufficiency, dyserythropoeitic anemia, and calvarial hyperostosis are caused by a mutation in the COX4I2 gene. Am J Hum Genet 84(3):412–417

    Article  CAS  Google Scholar 

  • Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M (2017) Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid Med Cell Longev 2017:1534056

    Article  CAS  Google Scholar 

  • Srinivasan S, Avadhani NG (2012) Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 53(6):1252–1263

    Article  CAS  Google Scholar 

  • Srinivasan S, Spear J, Chandran K, Joseph J, Kalyanaraman B, Avadhani NG (2013) Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. PLoS ONE 8(10):e77129

    Article  CAS  Google Scholar 

  • Srivastava S (2017) The mitochondrial basis of aging and age-related disorders. Genes 8(12):398

    Article  CAS  Google Scholar 

  • Steverding D, Kadenbach B (1991) Influence of N-ethoxycarbonyl-2-ethoxy- 1,2-dihydroquinoline modification on proton translocation and membrane potential of reconstituted cytochrome c oxidase support ‘‘proton slippage’’. J Biol Chem 266:8097–8101

    CAS  Google Scholar 

  • Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 109:269–283

    Article  CAS  Google Scholar 

  • Sugamura K, Keaney JF Jr (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51(5):978–992

    Article  CAS  Google Scholar 

  • Tamiya G, Makino S, Hayashi M, Abe A, Numakura C, Ueki M, Tanaka A, Ito C, Toshimori K, Ogawa N, Terashima T, Maegawa H, Yanagisawa D, Tooyama I, Tada M, Onodera O, Hayasaka K (2014) A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot–Marie–Tooth disease. Am J Hum Genet 95(3):294–300

    Article  CAS  Google Scholar 

  • Terada H (1990) Uncouplers of oxidative phosphorylation. Environ Health Perspect 87:213–218

    Article  CAS  Google Scholar 

  • Timón-Gómez A, Nývltová E, Abriata LA, Vila AJ, Hosler J, Barrientos A (2018) Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol 76:163–178. https://doi.org/10.1016/j.semcdb.2017.08.055

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Article  CAS  Google Scholar 

  • van den Bergh S, Slater EC (1960) The respiratory activity and respiratory control of sarcosomes isolated from the thoracic muscle of the housefly. Biochim Biophys Acta 40:176–177

    Article  Google Scholar 

  • Veech RL, Lawson JWR, Cornell NW, Krebs HA (1979) Cytosolic phosphorylation potential. J Biol Chem 254:6538–6547

    CAS  Google Scholar 

  • Vidoni S, Harbour ME, Guerrero-Castillo S, Signes A, Ding S, Fearnley IM, Taylor RW, Tiranti V, Arnold S, Fernandez-Vizarra E, Zeviani M (2017) MR-1S interacts with PET100 and PET117 in module-based assembly of human cytochrome c oxidase. Cell Rep 18(7):1727–1738

    Article  CAS  Google Scholar 

  • Villani G, Attardi G (1997) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci USA 94:1166–1171

    Article  CAS  Google Scholar 

  • Villani G, Greco M, Papa S, Attardi G (1998) Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem 273:31829–31836

    Article  CAS  Google Scholar 

  • Vogt S, Rhiel A, Koch V, Kadenbach B (2007) Regulation of oxidative phosphorylation by inhibition of its enzyme complexes via reversible phosphorylation. Curr Enzyme Inhib 3:189–206

    Article  CAS  Google Scholar 

  • Vondrackova A, Vesela K, Hansikova H, Docekalova DZ, Rozsypalova E, Zeman J, Tesarova M (2012) High-resolution melting analysis of 15 genes in 60 patients with cytochrome-c oxidase deficiency. J Hum Genet 57:442–448

    Article  CAS  Google Scholar 

  • Vygodina TV, Mukhaleva E, Azarkina NV, Konstantinov AA (2017) Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: implications for physiological significance of the effect. Biochim Biophys Acta 1858(12):982–990

    Article  CAS  Google Scholar 

  • Weishaupt A, Kadenbach B (1992) Selective removal of subunit VIb increases the activity of cytochrome c oxidase. Biochemistry 31:11477–11481

    Article  CAS  Google Scholar 

  • Wikström M, Saari HT (1977) The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim Biophys Acta 462(2):347–361

    Article  Google Scholar 

  • Wikström M, Krab K, Sharma V (2018) Oxygen activation and energy conservation by cytochrome c oxidase. Chem Rev 118(5):2469–2490. https://doi.org/10.1021/acs.chemrev.7b00664

    Article  CAS  Google Scholar 

  • Woyda-Ploszczyca AM, Jarmuszkiewicz W (2017) The conserved regulation of mitochondrial uncoupling proteins: from unicellular eukaryotes to mammals. Biochim Biophys Acta 1858(1):21–33

    Article  CAS  Google Scholar 

  • Wu M, Gu J, Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–1609

    Article  CAS  Google Scholar 

  • Yang WL, Iacono L, Tang WM, Chin KV (1998) Novel function of the regulatory subunit of protein kinase A: regulation of cytochrome c oxidase activity and cytochrome c release. Biochemistry 37:14175–14180

    Article  CAS  Google Scholar 

  • Yoshikawa S (2003) A cytochrome c oxidase proton pumping mechanism that excludes the O2 reduction site. FEBS Lett 555:8–12

    Article  CAS  Google Scholar 

  • Yoshikawa S, Shimada A (2015) Reaction mechanism of cytochrome c oxidase. Chem Rev 115(4):1936–1989

    Article  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    Article  CAS  Google Scholar 

  • Yoshikawa S, Muramoto K, Shinzawa-Itoh K, Aoyama H, Tsukihara T, Shimokata K, Katayama Y, Shimada H (2006) Proton pumping mechanism of bovine heart cytochrome c oxidase. Biochim Biophys Acta 1757:1110–1116

    Article  CAS  Google Scholar 

  • Yoshikawa S, Muramoto K, Shinzawa-Itoh K (2011) The O(2) reduction and proton pumping gate mechanism of bovine heart cytochrome c oxidase. Biochim Biophys Acta 1807:1279–1286

    Article  CAS  Google Scholar 

  • Zhang K, Wang G, Zhang X, Hüttemann PP, Qiu Y, Liu J, Mitchell A, Lee I, Zhang C, Lee JS, Pecina P, Wu G, Yang ZQ, Hüttemann M, Grossman LI (2016) COX7AR is a stress-inducible mitochondrial COX subunit that promotes breast cancer malignancy. Sci Rep 6:31742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kadenbach.

Additional information

This paper belongs to a series of peer-reviewed contributions coordinated by Guest Editor Ferdinando Palmieri on the theme “Current topics in biology”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadenbach, B. Regulation of mitochondrial respiration and ATP synthesis via cytochrome c oxidase. Rend. Fis. Acc. Lincei 29, 421–435 (2018). https://doi.org/10.1007/s12210-018-0710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-018-0710-y

Keywords

Navigation