Skip to main content
Log in

Decoration of magnesium oxide nanoparticles on O-MWCNTs and its antibacterial studies

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Magnesium oxide nanoparticles in their pure phase are carefully and homogenously decorated by a facile approach on oxygen-functionalized multi-walled carbon nanotubes (O-MWCNTs) using magnesium nitrate. Magnesium oxide nanocrystals imbued on O-MWCNTs were examined for its structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. The nanocrystals on the O-MWCNTs were determined to be 20–25 nm size. Magnesium oxide nanocrystal’s dislocation density and microstrain are calculated. Thermogravimetric measurements are studied for the weight loss. The antibacterial studies are performed against a set of bacterial strains. It has shown its antibacterial properties on both gram-positive and gram-negative bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Muensit N, Baltrusaitis J (2012) Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol 219:158–164

    Article  CAS  Google Scholar 

  • Basavaraja C, Jo EA, Kim BS, Kim DG, Huh DS (2010) Biological templating of polyaniline and polypyrrole using E. coli. Macromol Res 18:222

    Article  CAS  Google Scholar 

  • Boudreau MA, Fisher JF, Mobashery S (2012) Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 51(14):2974–2990. doi:10.1021/bi300174x

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533

    Article  CAS  Google Scholar 

  • Carson L, Kelly-Brown C, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI (2009) Synthesis and characterization of chitosan–carbon nanotube composites. Mat Lett 63:617

    Article  CAS  Google Scholar 

  • Chung KT, Chen SC, Wong TY, Wei CI (1998) Effects of benzidine and benzidine analogues on growth of bacteria including Azotobacter vinelandii. Environ Toxicol Chem 17:271–275

    Article  CAS  Google Scholar 

  • DeJesus JC, González I, Quevedo A, Puerta T (2005) Thermal decomposition of nickel acetate tetrahydrate: an integrated study by TGA, QMS and XPS techniques. J Mol Catal A 228:283

    Article  CAS  Google Scholar 

  • Erdema A, Mutia M, Karadeniza H, Congura G, Canavara E (2012) Electrochemical monitoring of indicator-free DNA hybridization by carbon nanotubes–chitosan modified disposable graphite sensors. Colloid Surf B Biointer 95:222

    Article  Google Scholar 

  • Gonzalez-Campos JB, Mota-Morales JD, Kumar S, Zarate-Trivino D, Hernandez-Iturriaga M, Prokhorov E, Vazquez-Lepe M, Garcıa-Carvajal ZY, Sanchez IC, Luna-Barcenas G (2013) New insights into the bactericidal activity of chitosan-Ag bionanocomposite: the role of the electrical conductivity. Colloid Surf B Biointer 111:741

    Article  CAS  Google Scholar 

  • Hao C, Ding L, Zhang X, Ju H (2007) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal Chem 79:4442

    Article  CAS  Google Scholar 

  • Ke G, Guan W, Tang C, Guan W, Zeng D, Deng F (2007) Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules 8:322

    Article  CAS  Google Scholar 

  • Khare R, Bose S (2005) Carbon nanotube based composites-a review. J Min Mater Character Eng 41:31–46

    Google Scholar 

  • Koch S, Woias P, Meixner LK, Drost S, Wolf H (1999) Protein detection with a novel ISFET-based zeta potential analyzer. Biosens Bioelectron 14:417–425

    Article  Google Scholar 

  • Kondoh K, Fukuda H, Umeda J, Imai H, Fugetsu B, Endo M (2010) Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites. Mater Sci Eng A 527:4103–4108

    Article  Google Scholar 

  • Lin KY, Tsai WT, Chang JK (2010) Decorating carbon nanotubes with Ni particles using an electroless deposition technique for hydrogen storage applications. J Int, Hydrog Energy 35:7555

    Article  CAS  Google Scholar 

  • Liu F, Zhang XB, Haussler D, Jager W, Yi GF, Cheng JP, Tao XY, Luo ZQ, Zhou SM (2006) TEM characterization of metal and metal oxide particles supported by multi-wall carbon nanotubes. J Mater Sci 41:4523

    Article  CAS  Google Scholar 

  • Liu YL, Chen WH, Chang YH (2009) Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs. Carbohydr Polym 76:232

    Article  CAS  Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Yaniv A, Jelenik R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Mohamed Basith N, Judith Vijaya J, John Kennedy L, Bououdina M, Jenefar S, Kaviyarasan V (2014) Co-doped ZnO nanoparticles: structural, morphological, optical, magnetic and antibacterial studies. J Mater Sci Technol 30(11):1108–1117

    Article  Google Scholar 

  • Nagappa B, Chandrappa GT (2007) Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous Mesoporous Mater 106:212–218

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004

    Article  Google Scholar 

  • Pal J, Chauhan P (2009) Structural and optical characterization of tin dioxide nanoparticles prepared by a surfactant mediated method. Mater Charact 60:1512

    Article  CAS  Google Scholar 

  • Park C, Ounaies Z, Watson KA, Pawlowski K, Lowther SE, Connell JW, Siochi EJ, Harrison JS, St. Clair TL (2002) Polymer-single wall carbon nanotube composites for potential spacecraft applications. Nasa Langley Research Center

  • Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55:6239

    Article  CAS  Google Scholar 

  • Rishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22(47):24610–24617

    Article  Google Scholar 

  • Sahoo S, Husale S, Karna S (2011) Controlled assembly of Ag nanoparticles and carbon nanotube hybrid structures for biosensing. J Am Chem Soc 133(11):4005–4009

    Article  CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotech 16(2):187–194

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Al-Mulla EAJ (2012) Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17(7):8506–8517

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Al-Mulla EAJ, Shabanzadeh P, Bagheri S (2013) Antibacterial effect of silver nanoparticles on talc composites. Res Chem Intermed. doi:10.1007/s11164-013-1188-y

    Google Scholar 

  • Shieh YT, Yang YF (2006) Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes. Eur Polym J 42:3162

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679

    Article  CAS  Google Scholar 

  • Tang C, Chen N, Zhang Q, Wang K, Fu Q, Zhang X (2009) Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polym Degr Stab 94:124

    Article  CAS  Google Scholar 

  • Titus E, Ali N, Cabral G, Gracio J, Babu PR, Jackson MJ (2006) Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy. J Mater Eng Perform 15:182

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World App Sci J 3(3):417–433

    Google Scholar 

  • Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067

    Article  CAS  Google Scholar 

  • Xu C, Wu G, Liu Z, Wu D, Meek TT, Han Q (2004) Preparation of copper nanoparticles on carbon nanotubes by electroless plating method. Mater Res Bulletin 39:1499–1505

    Article  CAS  Google Scholar 

  • Zhu X, Bai R, Wee KH, Liu C, Tang SL (2010) Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. J Membr Sci 363:278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Prabhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, Y.T., Venkateswara Rao, K., Siva Kumari, B. et al. Decoration of magnesium oxide nanoparticles on O-MWCNTs and its antibacterial studies. Rend. Fis. Acc. Lincei 26, 263–270 (2015). https://doi.org/10.1007/s12210-015-0417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0417-2

Keywords

Navigation