Skip to main content
Log in

Dynamic behavior of a droplet on a moving wall

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A two-dimensional immiscible droplet deformation phenomenon on a moving channel bottom wall is simulated using the lattice Boltzmann method. We considered the effect of the initial static contact angle, the capillary number, and the size of the droplet on the dynamic behavior of the moving droplet. When the initial static contact angle is less than 90°, the moving droplet is deformed and stretched, resulting in increasing width and decreasing height of the droplet. This is due to the hydrophilic (wetting) characteristic of the channel’s bottom wall. However, when the initial static contact angle is larger than 90°, the deformed and stretched droplet on the moving channel bottom wall is broken up, and is then pinched off or detached from the moving channel bottom wall, depending on the initial static contact angle and capillary number. This is due to the hydrophobic (non-wetting) characteristic of the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata, Physical Review Letters, 61 (1988) 2332–2335.

    Article  Google Scholar 

  2. F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, Europhysics Letters, 9 (1989) 663–668.

    Article  Google Scholar 

  3. S. Chen, H. Chen, D. Martinez and W. Matthaeus, Lattice Boltzmann model for simulation of magnetohydrodymanics, Physical Review Letters, 67 (1991) 3776–3780.

    Article  Google Scholar 

  4. Y. H. Qian, D. d’Humieres and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhysics. Letters, 17 (1992) 479–484.

    Article  MATH  Google Scholar 

  5. A. K. Gunstensen and D. H. Rothman, Lattice Boltzmann model of immiscible fluids, Physical Review A, 43 (1991) 4320–4327.

    Article  Google Scholar 

  6. D. H. Rothman and J. M. Keller, Immiscible cellularautomation fluids, Journal of Statistical Physics, 52 (1988) 1119–1124.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Grunau, S. Chen and K. Eggert, A lattice Boltzmann model for multiphase fluids flows, Physics of Fluids, A5 (1993) 2557–2569.

    Article  Google Scholar 

  8. X. Shan and H. Chen, Lattice Boltzmann model of simulating flows with multiple phases and components, Physical Review E, 47 (1993) 1815–1819.

    Article  Google Scholar 

  9. X. Shan and G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics, 81 (1995) 379–393.

    Article  MATH  MathSciNet  Google Scholar 

  10. X. He, S. Chen, R. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, Journal of Computational Physics, 152 (1999) 642–663.

    Article  MATH  MathSciNet  Google Scholar 

  11. X. He, X. Shan and G. D. Doolen, Discrete Boltzmann equation model for nonideal gases, Physical Review E, 57 (1998) R13–R16.

    Article  Google Scholar 

  12. M. R. Swift, W. R. Osborn and J. M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Physical Review Letters, 75 (1995) 830–833.

    Article  Google Scholar 

  13. T. Inamuro, T. Ogata, S. Tajima and N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, Journal of Computational Physics, 198 (2004) 628–644.

    Article  MATH  Google Scholar 

  14. Y. Y. Yan and Y. Q. Zu, A lattice Boltzmann method for incompressible two-phase flow on partial wetting surface with large density ratio, Journal of Computational Physics, 227 (2007) 763–775.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Yoshino and Y. Mizutani, Lattice Boltzmann simulation of liquid-gas flows through solid bodies in a square duct, Mathematics and Computers in Simulation, 72 (2006) 264–269.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. J. Briant, P. Papatzacos and J. M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid-gas system, Philosophical Transactions of the Royal Society A, 360 (2002) 485–495.

    Article  MATH  Google Scholar 

  17. A. J. Briant, A. J. Wagner and J. M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid-gas system, Physical Review E, 69 (2004) 031602.

    Article  Google Scholar 

  18. J. W. Cahn, Critical point wetting, The Journal of Chemical Physics, 66 (1977) 3667–3672.

    Article  Google Scholar 

  19. Y. Kataoka and T. Inamuro, Numerical simulations of the behavior of a drop in a square pipe flow using the two-phase lattice Boltzmann method, Philosophical Transactions of The Royal Society A, 369 (2011) 2528–2536.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Tanaka, Y. Washio, M. Yoshino and T. Hirata, Numerical simulation of dynamic behavior of droplet on solid surface by the two-phase lattice Boltzmann method, Computers & Fluids, 40 (2011) 68–78.

    Article  MATH  Google Scholar 

  21. E. B. Dussan, The moving contact line: the slip boundary condition, Journal of Fluid Mechanics, 77 (1976) 665–684.

    Article  MATH  Google Scholar 

  22. L. M. Hocking, A moving fluid interface on a rough surface, Journal of Fluid Mechanics, 76 (1976) 801–817.

    Article  MATH  Google Scholar 

  23. K. M. Jansons, Moving contact lines on a two-dimensional rough surface, Journal of Fluid Mechanics, 154 (1985) 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Y. Zhou and P. Sheng, Dynamics of immiscible fluid displacement in a capillary tube, Physical Review Letters, 64 (1990) 882–885.

    Article  Google Scholar 

  25. J. Koplik, J. R. Banavar and J. F. Willemsen, Molecular dynamics of a Poiseuille flow and moving contact lines, Physical Review Letters, 60 (1988) 1282–1286.

    Article  Google Scholar 

  26. Y. D. Shikhmurzaev, Moving contact lines in liquid/liquid/solid systems, Journal of Fluid Mechanics, 334 (1997) 211–249.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. D. Schleizer and R. T. Bonnecaze, Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows, Journal of Fluid Mechanics, 383 (1998) 29–54.

    Article  Google Scholar 

  28. Q. Kang, D. Chen and S. Chen, Displacement of a twodimensional immiscible droplet in a channel, Physics of Fluid, 14 (2002) 3203–3214.

    Article  Google Scholar 

  29. Q. Kang, D. Chen and S. Chen, Displacement of a threedimensional immiscible droplet in a duct, Journal of Fluid Mechanics, 545 (2005) 41–65.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Ding and P. D. M. Spelt, Onset of motion of a threedimensional droplet on a wall in shear flow at moderate Reynolds number, Journal of Fluid Mechanics, 599 (2008) 341–362.

    Article  MATH  Google Scholar 

  31. H. Ding, M. N. H. Gilani and P. D. M. Spelt, Sliding, pinch-off and detachment of a droplet on a wall in shear flow, Journal of Fluid Mechanics, 53 (2008) 1–28.

    Google Scholar 

  32. L. Wu, M. Tsutahara, L. S. Kim and M. Y. Ha, Threedimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel, International Journal of Multiphase Flow, 34 (2008) 852–864.

    Article  Google Scholar 

  33. D. H. Rothman and S. Zaleski, Lattice gas cellular automata, Cambridge University Press: Cambridge (1997).

    Book  MATH  Google Scholar 

  34. J. U. Brackbill, D. B. Kothe and C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, 100 (1992) 335–354.

    Article  MATH  MathSciNet  Google Scholar 

  35. Taylor, G. I. Proc and R. Soc. London, Ser. A 1932, 138, 41.

  36. Taylor, G. I. Proc and R. Soc. London, Ser. A 1934, 146, 501.

  37. S. Hou, X. Shan, Q. Zou, G. Doolen and W. Soll, Evaluation of two lattice Boltzmann models for multiphase flows, Journal of Computational Physics, 138 (1997) 695–713.

    Article  MATH  MathSciNet  Google Scholar 

  38. N. S. Martys and H. Chen, Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Physical Review E, 53 (1996) 743–751.

    Article  Google Scholar 

  39. B. R. Sehgal, R. R. Nourgaliev and T. N. Dinh, Numerical simulation of droplet deformation and break-up by lattice Boltzmann method, Progress in Nuclear Energy, 34 (1999) 471–488.

    Article  Google Scholar 

  40. F. A. L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic, New York (1992).

    Google Scholar 

  41. S. Wolfram, Cellular automaton fluids. 1: Basic theory, Journal of Statistical Physics, 45 (1986) 471–526.

    Article  MATH  MathSciNet  Google Scholar 

  42. P. Lavallee, J. P. Boon and A. Noullez, Boundaries in lattice gas flows, Physic D: Nonlinear Phenomena, 47 (1991) 233–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ManYeong Ha.

Additional information

Recommended by Associate Editor Gihun Son

M. Y. Ha received his B.S. degree from Pusan National University, Korea in 1981, his M.S. degree, in 1983, from Korea Advanced Institute of Science and Technology, Korea, and his Ph.D. from Pennsylvania State University, USA in 1990. Dr. Ha is currently a Professor at the School of Mechanical Engineering at Pusan National University in Buasn, Korea. He serves as an Editor of the Journal of Mechanical Science and Technology. His research interests are focused on thermal management, computational fluid dynamics, and micro/nano fluids.

H. R. Kim received his M.S. degree in 2011 from Pusan National University, Korea. In his master course, he conducted a number of studies under the supervision of Prof. Man-Yeong Ha. His research interests are focused on thermofluid phenomena analysis for enhancing the efficiency of industrial devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.R., Ha, M., Yoon, H.S. et al. Dynamic behavior of a droplet on a moving wall. J Mech Sci Technol 28, 1709–1720 (2014). https://doi.org/10.1007/s12206-014-0316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0316-y

Keywords

Navigation