Skip to main content
Log in

Tribology issues in nanoimprint lithography

  • Review Paper
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Nanoimprint lithography (NIL) is one of the most promising technologies for nanofabrication because it can create nano- and microscale structures and devices in a cost-effective manner. In the NIL process, a mold with patterns on its surface comes in contact with a polymer film on a substrate. The patterns are transferred to the polymer film and then the mold is separated from the film. Mechanical contact between the mold and the polymer film, and between the film and the substrate, is inevitable. In some cases, during the separation process, adhesion and friction forces at the interfaces can deform and fracture the transferred patterns and detach the polymer film from the substrate. Thus, controlling the adhesion and friction between the materials in contact is very important in achieving a successful pattern transfer and making the NIL process a robust nanofabrication technique. Many theoretical and experimental research efforts have been made to clarify the tribological phenomena in NIL and to reduce defects due to adhesion and friction. This article describes the tribological problems encountered and reviews the related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe and G. M. Whitesides, Unconventional nanofabrication, Annu. Rev. Mater. Res. 34 (2004) 339–372.

    Article  Google Scholar 

  2. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson and G. M. Whitesides, New approaches to nanofabrication: molding, printing, and other techniques, Chem. Rev. 105 (2005) 1171–1196.

    Article  Google Scholar 

  3. L. J. Guo, Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys. 37 (2004) 123–141.

    Article  Google Scholar 

  4. H. Schift, Nanoimprint lithography: An old story in modern times? A review, J. Vac. Sci. Technol. B 26(2) (2008) 458–480.

    Article  Google Scholar 

  5. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 67(20) (1995) 3114–3116.

    Article  Google Scholar 

  6. J. Haisma, M. Verheijein, K. van den Heuvel and J. van den Berg, Mold-assisted nanolithography: A process for reliable pattern replication, J. Vac. Sci. Technol. B 14(6) (1996) 4124–4128.

    Article  Google Scholar 

  7. T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan and C. G. Willson, Step and flash imprint lithography: Template surface treatment and defect analysis, J. Vac. Sci. Technol. B 18(6) (2000) 3572–3577.

    Article  Google Scholar 

  8. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography, Appl. Phys. Lett. 84(26) 2004 5299–5301.

    Article  Google Scholar 

  9. D. S. Macintyre, Y. Chen, D. Gourlay, E. Boyd, D. Moran, X. Cao, K. Elgaid, C. R. Stanley, I. Thayne and S. Thoms, Nanoimprint lithography process optimization for the fabrication of high electron mobility transistors, J. Vac. Sci. Technol. B 21(6) (2004) 2783–2787.

    Article  Google Scholar 

  10. C. Chao and L. J. Guo, Polymer microring resonators fabricated by nanoimprint technique, J. Vac. Sci. Technol. B 20(6) (2002) 2862–2866.

    Article  Google Scholar 

  11. E. M. Arakcheeva, E. M. Tanklevskaya, S. I. Nesterov, M. V. Maksimov, S. A. Gurevich, J. Seekamp and C. M. S. Torres, Fabrication of semiconductor- and polymer-based photonic crystals using nanoimprint lithography, Tech. Phys. 50(8) (2005) 1043–1047.

    Article  Google Scholar 

  12. P. C. Kao, S. Y. Chu, T. Y. Chen, C. Y. Zhan, F. C. Hong, C. Y. Chang, L. C. Hsu, W. C. Liao and M. H. Hon, Fabrication of large-scaled organic light emitting devices on the flexible substrates using low-pressure imprinting lithography, Elec. Dev. IEEE Transactions 52(8) (2005) 1722–1726.

    Article  Google Scholar 

  13. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, Nanotechnology 16(9) (2005) 1874–1877.

    Article  Google Scholar 

  14. Y. Hirai, S. Yoshida and N Takagi, Defect analysis in thermal nanoimprint lithography, J. Vac. Sci. Technol. B 20(6) (2003) 2765–2770.

    Article  Google Scholar 

  15. Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani and K. Yamamoto, High aspect pattern fabrication by nanoimprint lithography using fine diamond mold, Jpn. J. Appl. Phys. 42 (2003) 3863–3866.

    Article  Google Scholar 

  16. R. W. Jaszewski, H. Schift, P. Groning and G. Margaritondo, Properties of thin anti-adhesive films used for the replication of microstructures in polymers, Microelectronic Eng. 45(1–4) (1997) 381–384.

    Article  Google Scholar 

  17. M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. G. I. Ling, M. Keil and L. Montelius, Improving stamps for 10 nm level wafer scale nanoimprint lithography, Microelectronic Eng. 61–62 (2002) 441–448.

    Article  Google Scholar 

  18. A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev. 96 (1996) 1533–1554.

    Article  Google Scholar 

  19. J. K. Chen, F. H. Ko, K. F. Hsieh, C. T. Chou and F. C. Chang, Effect of fluoroalkyls substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography, J. Vac. Sci. Technol. B 22(6) (2004) 3233–3241.

    Article  Google Scholar 

  20. G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong and R. S. Williams, Vapor-phase selfassembled monolayer for improved mold release in nanoimprint lithography, Langmuir 21 (2005) 1158–1161.

    Article  Google Scholar 

  21. H. Schift, S. Saxer, S. G. Park, C. Padeste, U. Pieles and J. Gobrecht, Controlled co-evaporation of silanes for nanoimprint stamps, Nanotechnology 16 (2005) S171–S175.

    Article  Google Scholar 

  22. P. Gallo, B. Viallet, E. Daran and C. Fontaine, Efficient aminosilane adhesion promoter for soft nanoimprint on GaAs, Appl. Phys. Lett. 87 (2005) 183111.

    Article  Google Scholar 

  23. D. G. Choi, D. I. Lee, K. D. Kim, J. H. Jeong, J. H. Choi and E. S. Lee, Measurement of surface adhesion force of adhesion promoter and release layer for UV-nanoimprint lithography, J. Nanosci. Nanotechnol. 9 (2009) 769–773.

    Article  Google Scholar 

  24. F. A. Houle, E. Guyer, D. C. Miller and R. Dauskardt, Adhesion between template materials and UV-cured nanoimprint resists, J. Vac. Sci. Technol. B 25(4) (2007) 1179–1185.

    Article  Google Scholar 

  25. D. Truffier-Boutry, M. Zelsmann, J. De Girolamo, J. Boussey, C. Lombard and B. Pépin-Donat, Chemical degradation of fluorinated antisticking treatments in UV nanoimprint lithography, Appl. Phys. Lett. 94 (2009) 044110.

    Article  Google Scholar 

  26. A. Erdemir, Genesis of superlow friction and wear in diamondlike carbon films, Tribol. Int. 37 (2004) 1005–1012.

    Article  Google Scholar 

  27. S. Ramachandran, L. Tao, T. H. Lee, S. Sant, L. J. Overzet, M. G. Goeckner, M. J. Kim, G. S. Lee and W. Hu, Deposition and patterning of diamondlike carbon as antiwear nanoimprint templates, J. Vac. Sci. Technol. B 24(6) (2006) 2993–2997.

    Article  Google Scholar 

  28. A. O. Altun, J. H. Jeong, J. J. Rha, D. G. Choi, K. D. Kim and E. S. Lee, Fabrication of fluorine-doped diamond-like carbon stamps for UV nanoimprint lithography, Nanotechnology 17 (2006) 4659–4663.

    Article  Google Scholar 

  29. K. Nakamatsu, N. Yamada, K. Kanda, Y. Haruyama and S. Matsui, Fluorinated diamond-like carbon coating as antisticking layer on nanoimprint mold, Jpn. J. Appl. Phys 45(35) (2006) L954–L956.

    Article  Google Scholar 

  30. K. D. Kim, J. H. Jeong, A. Ali, D. I. Lee, D. G. Choi and E. S. Lee, Replication of an UV-NIL stamp using DLC coating, Microelectronic Eng. 84 (2007) 899–903.

    Article  Google Scholar 

  31. M. Schvartzman, A. Mathur, Y. Kang, C. Jahnes, J. Hone and S. J. Wind, Fluorinated diamondlike carbon templates for high resolution nanoimprint lithography, J. Vac. Sci. Technol. B 26 (6) (2008) 2394–2398.

    Article  Google Scholar 

  32. D. Y. Khang, and H. H. Lee, Sub-100 nm patterning with an amorphous fluoropolymer mold, Langmuir 20 (2004) 2445–2448.

    Article  Google Scholar 

  33. D. G. Choi, J. H. Jeong, Y. S. Sim, E. S. Lee, W. S. Kim, and B. S. Bae, Fluorinated organic-inorganic hybrid mold as a new stamp for nanoimprint and soft lithography, Langmuir 21 (2005) 9390–9392.

    Article  Google Scholar 

  34. T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel and J. A. Rogers, Soft lithography using acryloxy perfluoropolyether composite stamps, Langmuir 23 (2007) 2898–2905.

    Article  Google Scholar 

  35. J. Y. Kim, D. G. Choi, J. H. Jeong and E. S. Lee, UVcurable nanoimprint resin with enhanced anti-sticking property, Appl. Surf. Sci. 254 (2008) 4793–4796.

    Article  Google Scholar 

  36. T. H. Kim, A. Carlson, J. H. Ahn, S. M. Won, S. Wang, Y. Huang and J. A. Rogers, Kinetically controlled, adhesiveless transfer printing using microstructured stamps, App. Phys. Lett. 94 (2009) 113502.

    Article  Google Scholar 

  37. H. Zeng, N. Maeda, N. Chen, M. Tirrell and J. Israelachvili, Adhesion and friction of polystyrene surfaces around Tg, Macromolecules 39 (2006) 2350–2363.

    Article  Google Scholar 

  38. R. M. Christensen, Theory of Viscoelasticity, An Introduction, 2 nd Edition, Academic Press, New York, USA, (1982).

    Google Scholar 

  39. M. W. Lin, D. J. Hellebusch, K. Wu, E. K. Kim, K. H. Lu, K. M. Liechti, J. G. Ekerdt, P. S. Ho and C. G. Willson, Role of surfactants in adhesion reduction for step and flash imprint lithography, J. Micro/Nanolith. MEMS MOEMS 7(3) (2008) 033005.

    Article  Google Scholar 

  40. J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, Adv. Appl. Mech. 29 (1992) 63–191.

    Article  MATH  Google Scholar 

  41. J. H. Kang, K. S. Kim and K. W. Kim, Molecular dynamics study of pattern transfer in nanoimprint lithography, Tribol. Lett. 25 (2007) 93–102.

    Article  MathSciNet  Google Scholar 

  42. R. B. Dupaix and W. Cash, Finite element modeling of polymer hot embossing using a glass-rubber finite strain constitutive model, Polym. Eng. Sci. 49(3) (2009) 531–543.

    Article  Google Scholar 

  43. K. L. Mittal, Adhesion measurement of films and coatings, VSP, Netherlands, (1995).

    Google Scholar 

  44. J. Taniguchi, T. Kawasaki, Y. Tokano, Y. Kogo, I. Miyamoto, M. Komuro, H. Hiroshima, N. Sakai and K. Tada, Measurement of adhesive force between mold and photocurable resin in imprint technology, Jpn. J. Appl. Phys. Part 1 41 (2002) 4194–4197.

    Article  Google Scholar 

  45. E. J. Jang, Y. B. Park, H. J. Lee, D. G. Choi, J. H. Jeong, E. S. Lee and S. Hyun, Effect of surface treatments on interfacial adhesion energy between UV-curable resist and glass wafer, Int. J. Adhes. Adhes. 29(6) (2009) 662–669.

    Article  Google Scholar 

  46. J. Tallal, M. Gordon, K. Berton, A. L. Charley and D. Peyrade, AFM characterization of anti-sticking layers used in nanoimprint, Microelec. Eng. 83 (2006) 851–854.

    Article  Google Scholar 

  47. H. J. Lee, S. Hyun, J. H. Kim, H. J. Lee, D. G. Choi, D. I. Lee, J. H. Jeong and E. S. Lee, Measurement of adhesion force by a symmetric AFM probe for nano-imprint lithography application, J. Adhes. Sci. Technol. 22 (2008) 1379–1386.

    Article  Google Scholar 

  48. A. Koszewski, Z. Rymuza and F. Reuther, Evaluation of nanomechanical, nanotribological and adhesive properties of ultrathin polymer resist film by AFM, Microelectronic Eng. 85 (2008) 1189–1192.

    Article  Google Scholar 

  49. K. S. Kim, Y. Ando and K. W. Kim, The effect of temperature on the nanoscale adhesion and friction behaviors of thermoplastic polymer films, Nanotechnology 19 (2008) 105701.

    Article  Google Scholar 

  50. K. S. Kim, J. C. Heo and K. W. Kim, Effect of temperature on the micro-scale adhesion behavior of thermoplastic polymer film, J. KSTLE 25(2) (2009) 86–95.

    Google Scholar 

  51. S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kotz and J. Gobrecht, Anti-adhesive layers on nickel stamps for nanoimprint lithography, Microelectronic Eng. 73–74 (2004) 196–201.

    Article  Google Scholar 

  52. K. S. Kim, J. H. Kang and K. W. Kim, Adhesion characteristics between mold and thermoplastic polymer film in thermal nanoimprint lithography, J. KSTLE 24(5) (2008) 255–263.

    MathSciNet  Google Scholar 

  53. K. S. Kim, J. C. Heo and K. W. Kim, Effects of temperature on the tribological characteristics of thermoplastic polymer film, J. KSTLE 25(4) (2009) 207–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Rok Lee.

Additional information

Sang-Rok Lee received his B.S. in Naval Architecture Engineering from Seoul National University in 1976. He then received his M.S. in Production Engineering from KAIST, and Ph.D. in Mechanical Engineering from Washington State University in 1987. Dr. Lee is currently a director of Center for Nanoscale Mechatronics & Manufacturing. His research interests include development of nanoscale manufacturing process and related equipment, and industrialization of the emerging nanotechnology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Kim, JH., Lee, HJ. et al. Tribology issues in nanoimprint lithography. J Mech Sci Technol 24, 5–12 (2010). https://doi.org/10.1007/s12206-009-1216-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-009-1216-4

Keywords

Navigation