Skip to main content
Log in

Influence of Nanoclay on the Properties and Morphology of Cement Mortar

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the impact of partial substitution of cement with hydrophilic nanoclay platelets on the mechanical properties, workability, consistency, water absorption and morphology of cement mortar. Cement mortar mixtures with various replacement ratios, 0.5%, 1%, and 2% of nanoclay by weight of cement, were prepared and tested according to the standards. The results show that adding small quantities of nanoclay could improve the mechanical strengths of cement mortar. The best enhancements were reported for cement mortar reinforced with 2 wt.% nanoclay, where 11%, 5%, and 9% improvement in the compressive strength, flexural strength, and tensile strength, respectively, were observed. Adding nanoclay into cement mortar also leads to increase the amount of water needed to reach the normal consistency, elongate its setting time, increase its water absorption, but reduce its capillary water absorption coefficient and lower flowability of the pastes. SEM imaging showed a reasonable level of dispersion of nanoclay within the mortar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Saleh, M. H. and Sundararaj, U. (2011). “Review of the mechanical properties of carbon nanofiber/polymer composites.” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 12, pp. 2126–2142, DOI: 10.1016/j.compositesa.2011.08.005.

    Article  Google Scholar 

  • Antoni, M., Rossen, J., Martirena, F., and Scrivener, K. (2012). “Cement substitution by a combination of metakaolin and limestone.” Cement and Concrete Research, Vol. 42, No. 12, pp. 1579–1589, DOI: 10.1016/j.cemconres.2012.09.006.

    Article  Google Scholar 

  • Björnström, J., Martinelli, A., Matic, A., Börjesson, L., and Panas, I. (2004). “Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement.” Chemical Physics Letters, Vol. 392, No. 1, pp. 242–248, DOI: 10.1016/j.cplett.2004.05.071.

    Article  Google Scholar 

  • Chang, T.-P., Shih, J.-Y., Yang, K.-M., and Hsiao, T.-C. (2007). “Material properties of Portland cement paste with nano-montmorillonite.” Journal of Materials Science, Vol. 42, No. 17, pp. 7478–7487, DOI: 10.1007/s10853-006-1462-0.

    Article  Google Scholar 

  • Farzadnia, N., Abang Ali, A. A., Demirboga, R., and Anwar, M. P. (2013). “Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars.” Cement and Concrete Research, Vol. 48, No. Supplement C, pp. 97–104, DOI: 10.1016/j.cemconres.2013.03.005.

    Article  Google Scholar 

  • Hakamy, A., Shaikh, F. U. A., and Low, I. M. (2014). “Characteristics of hemp fabric reinforced nanoclay–cement nanocomposites.” Cement and Concrete Composites, Vol. 50, No. Supplement C, pp. 27–35, DOI: 10.1016/j.matdes.2015.12.097.

    Article  Google Scholar 

  • Hakamy, A., Shaikh, F. U. A., and Low, I. M. (2015). “Characteristics of nanoclay and calcined nanoclay-cement nanocomposites.” Composites Part B: Engineering, Vol. 78, No. Supplement C, pp. 174–184, DOI: 10.1016/j.compositesb.2015.03.074.

    Article  Google Scholar 

  • Hakamy, A., Shaikh, F. U. A., and Low, I. M. (2016). “Effect of calcined nanoclay on the durability of NaOH treated hemp fabricreinforced cement nanocomposites.” Materials & Design, Vol. 92, No. Supplement C, pp. 659–666, DOI: 10.1016/j.cemconcomp.2014.03.002.

    Article  Google Scholar 

  • He, X. and Shi, X. (2008). “Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 2070, No. 1, pp. 13–21, DOI: 10.3141/2070-03.

    Article  Google Scholar 

  • Irshidat, M., Al-Saleh, M., and Sanad, S. (2015). “Effect of nanoclay on the expansive potential of cement mortar due to Alkali-Silica Reaction.” ACI Materials Journal, Vol. 112, No. 6, DOI: 10.14359/51687856.

    Google Scholar 

  • Irshidat, M. and Al-Saleh, M. (2018). “Thermal performance and fire resistance of nanoclay modified cementitious materials.” Construction and Building Materials, Vol. 159, pp. 213–219, DOI: 10.1016/j.conbuildmat.2017.10.127.

    Article  Google Scholar 

  • Ji, T. (2005). “Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2.” Cement and Concrete Research, Vol. 35, No. 10, pp. 1943–1947, DOI: 10.1016/j.cemconres.2005.07.004.

    Article  Google Scholar 

  • Jo, B.-W., Kim, C.-H., Tae, G., and Park, J.-B. (2007). “Characteristics of cement mortar with nano-SiO2 particles.” Construction and Building Materials, Vol. 21, No. 6, pp. 1351–1355, DOI: 10.1016/j.conbuildmat.2005.12.020.

    Article  Google Scholar 

  • Kuo, W.-Y., Huang, J.-S., and Lin, C.-H. (2006). “Effects of organomodified montmorillonite on strengths and permeability of cement mortars.” Cement and Concrete Research, Vol. 36, No. 5, pp. 886–895, DOI: 10.1016/j.cemconres.2005.11.013.

    Article  Google Scholar 

  • Li, H., Xiao, H., and Ou, J. (2004). “A study on mechanical and pressuresensitive properties of cement mortar with nanophase materials.” Cement and Concrete Research, Vol. 34, No. 3, pp. 435–438, DOI: 10.1016/j.cemconres.2003.08.025.

    Article  Google Scholar 

  • Li, H., Zhang, M., and Ou, J. (2006a). “Abrasion resistance of concrete containing nano-particles for pavement.” Wear, Vol. 260, Nos. 11–12, pp. 1262–1266, DOI: 10.1016/j.wear.2005.08.006.

    Article  Google Scholar 

  • Li, H., Zhang, M., and Ou, J. (2007). “Flexural fatigue performance of concrete containing nano-particles for pavement.” International Journal of Fatigue, Vol. 29, No. 7, pp. 1292–1301, DOI: 10.1016/j.ijfatigue.2006.10.004.

    Article  Google Scholar 

  • Lindgreen, H., Geiker, M. R., Krøyer, H., Springer, N., Skibsted, J. (2008). “Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates.” Cement and Concrete Composites, Vol. 30, No. 8, pp. 686–699, DOI: 10.1016/j.cemconcomp.2008.05.003.

    Article  Google Scholar 

  • Lindgreen, H., Skibsted, J., Krøyer, H., and Jakobsen, H. J. (2003). “Hydration of Portland cement in the presence of clay minerals studied by 29Si and 27Al MAS NMR spectroscopy.” Advances in Cement Research, Vol. 15, No. 3, pp. 103–112, DOI: 10.1680/adcr.2003.15.3.103.

    Article  Google Scholar 

  • Lin, K. L., Chang, W. C., Lin, D. F., Luo, H. L., and Tsai, M. C. (2008). “Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar.” Journal of Environmental Management, Vol. 88, No. 4, pp. 708–714, DOI: 10.1016/j.jenvman.2007.03.036.

    Article  Google Scholar 

  • Li, Z., Wang, H., He, S., Lu, Y., and Wang, M. (2006b). “Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite.” Materials Letters, Vol. 60, No. 3, pp. 356–359, DOI: 10.1016/j.matlet.2005.08.061.

    Article  Google Scholar 

  • Madani, H., Bagheri, A., and Parhizkar, T. (2012). “The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement.” Cement and Concrete Research, Vol. 42, No. 12, pp. 1563–1570, DOI: 10.1016/j.cemconres.2012.09.004.

    Article  Google Scholar 

  • Morsy, M. S., Aglan, H. A., and Abd El Razek, M. M. (2009). “Nanostructured zonolite–cementitious surface compounds for thermal insulation.” Construction and Building Materials, Vol. 23, No. 1, pp. 515–521, DOI: 10.1016/j.conbuildmat.2007.10.018.

    Article  Google Scholar 

  • Ostertag, C. P., Yi, C. K., and Vondran, G. (2001). “Tensile strength enhancement in interground fiber cement composites.” Cement and Concrete Composites, Vol. 23, No. 4, pp. 419–425, DOI: 10.1016/S0958-9465(00)00084-6.

    Article  Google Scholar 

  • Qing, Y., Zenan, Z., Deyu, K., and Rongshen, C. (2007). “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume.” Construction and Building Materials, Vol. 21, No. 3, pp. 539–545, DOI: 10.1016/j.conbuildmat.2005.09.001.

    Article  Google Scholar 

  • Richardson, I. G. (2004). “Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume.” Cement and Concrete Research, Vol. 34, No. 9, pp. 1733–1777, DOI: 10.1016/j.cemconres.2004.05.034.

    Article  Google Scholar 

  • Savastano Jr, H., Warden, P. G., and Coutts, R. S. P. (2005). “Microstructure and mechanical properties of waste fibre–cement composites.” Cement and Concrete Composites, Vol. 27, No. 5, pp. 583–592, DOI: 10.1016/j.cemconcomp.2004.09.009.

    Article  Google Scholar 

  • Scrivener, K. L. and Kirkpatrick, R. J. (2008). “Innovation in use and research on cementitious material.” Cement and Concrete Research, Vol. 38, No. 2, pp. 128–136, DOI: 10.1016/j.cemconres.2007.09.025.

    Article  Google Scholar 

  • Sobolev, K., Flores, I., Torres-Martinez, L. M., Valdez, P. L., Zarazua, E., and Cuellar, E. L. (2009). “Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials.” Nanotechnology in Construction 3, Springer, pp. 139–148, DOI: 10.1007/978-3-642-00980-8_18.

    Chapter  Google Scholar 

  • Tyson, B., Abu Al-Rub, R., Yazdanbakhsh, A., and Grasley, Z. (2011). “Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials.” Journal of Materials in Civil Engineering, Vol. 23, No. 7, pp. 1028–1035, DOI: 10.1061/(ASCE)MT.1943-5533.0000266.

    Article  Google Scholar 

  • Wang, C., Li, K.-Z., Li, H.-J., Jiao, G.-S., Lu, J., and Hou, D.-S. (2008). “Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites.” Materials Science and Engineering: A, Vol. 487, Nos. 1–2, pp. 52–57, DOI: 10.1016/j.msea.2007.09.073.

    Article  Google Scholar 

  • Wang, W.-C. (2017). “Compressive strength and thermal conductivity of concrete with nanoclay under Various High-Temperatures.” Construction and Building Materials, Vol. 147, No. Supplement C, pp. 305–311, DOI: 10.1016/j.conbuildmat.2017.04.141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Irshidat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshidat, M.R., Al-Saleh, M.H. Influence of Nanoclay on the Properties and Morphology of Cement Mortar. KSCE J Civ Eng 22, 4056–4063 (2018). https://doi.org/10.1007/s12205-018-1642-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1642-x

Keywords

Navigation