Skip to main content
Log in

A Simplified First-order Shear Deformation Theory for Bending, Buckling and Free Vibration Analyses of Isotropic Plates on Elastic Foundations

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents analytical solutions for bending, buckling and free vibration analyses of isotropic plates on elastic foundations using a simplified first-order shear deformation theory. Unlike the conventional first-order shear deformation theory, the present theory contains only two variables and has many similarities to the classical plate theory. For the elastic foundations, the Pasternak model which has two parameters is used. Equations of motion are derived from Hamilton’s principle. Analytical solutions of deflections, moments, shear forces, buckling loads and natural frequencies are obtained for rectangular plates with various boundary conditions. Numerical examples for various aspect ratios, side-to-thickness ratios and foundation parameters are presented to verify the validity of the present theory. Comparative study shows that the present theory is accurate and efficient in predicting bending, buckling and free vibration responses of isotropic plates on elastic foundations. Parametric study shows the effect of the elastic foundations on the behavior of the plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdalla, J. A. and Ibrahim, A. M. (2006). “Development of a discrete Reissner-Mindlin element on Winkler foundation.” Finite Elements in Analysis and Design, Vol. 42, Nos. 8-9, pp. 740–748, DOI: 10.1016/j.finel.2005.11.004.

    Article  Google Scholar 

  • Akhavan, H., Hashemi, S. H., Taher, H. R. D., Alibeigloo, A., and Vahabi, S. (2009a). “Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis.” Computer Materials Science, Vol. 44, No. 3, pp. 968–978, DOI: 10.1016/j.commatsci.2008.07.004.

    Article  Google Scholar 

  • Akhavan, H., Hashemi, S. H., Taher, H. R. D., Alibeigloo, A., and Vahabi, S. (2009b). “Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis.” Computer Materials Science, Vol. 44, No. 3, pp. 951–961, DOI: 10.1016/j.commatsci.2008.07.001.

    Article  Google Scholar 

  • Buczkowski, R. and Torbacki, W. (2001). “Finite element modelling of thick plates on two parameter elastic foundation.” International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 25, No. 14, pp. 1409–1427, DOI: 10.1002/nag.187.

    Article  MATH  Google Scholar 

  • Chucheepsakul, S. and Chinnaboon, B. (2002). “An alternative domain/boundary element technique for analyzing plates on two-parameter elastic foundations.” Engineering Analysis with Boundary Elements, Vol. 26, No. 6, pp. 547–555, DOI: 10.1016/S0955-7997(02)00007-3.

    Article  MATH  Google Scholar 

  • Civalek, O. (2007a). “Nonlinear analysis of thin rectangular plates on Winkler–Pasternak elastic foundations by DSC–HDQ methods.” Applied Mathematical Modelling, Vol. 31, No. 3, pp. 606–624, DOI: 10.1016/j.apm.2005.11.023.

    Article  MathSciNet  MATH  Google Scholar 

  • Civalek, O. (2007b). “Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method.” International Journal of Mechanical Sciences, Vol. 49, No. 6, pp. 752–765, DOI: 10.1016/j.ijmecsci.2006.10.002.

    Article  Google Scholar 

  • Dehghan, M. and Baradaran, G. H. (2011). “Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method.” Applied Mathematics and Computation, Vol. 218, No. 6, pp. 2772–2784, DOI: 10.1016/j.amc.2011.08.020.

    Article  MathSciNet  MATH  Google Scholar 

  • Endo, M. (2015). “Study on an alternative deformation concept for the Timoshenko beam and Mindlin plate models.” International Journal of Engineering Science, Vol. 87, pp. 32–46, DOI: 10.1016/j.ijengsci.2014.11.001.

    Article  Google Scholar 

  • Endo, M. and Kimura, N. (2007). “An alternative formulation of the boundary value problem for the Timoshenko Beam and Mindlin plate.” Journal of Sound and Vibration, Vol. 301, No. 1, pp. 355–373, DOI: 10.1016/j.jsv.2006.10.005.

    Article  Google Scholar 

  • Eratll, N. and Akoz, A. Y. (1997). “The mixed finite element formulation for the thick plates on elastic foundations.” Computer & Structures, Vol. 65, No. 4, pp. 515–529, DOI: 10.1016/S0045-7949(96)00403-8.

    Article  MATH  Google Scholar 

  • Ferreira, A., Castro, L., and Bertoluzza, S. (2011). “Analysis of plates on Winkler foundation by wavelet collocation.” Meccanica, Vol. 46, No. 4, pp. 865–873, DOI: 10.1007/s11012-010-9341-9.

    Article  MATH  Google Scholar 

  • Ferreira, A., Roque, C., Neves, A., Jorge, R., and Soares, C. (2010). “Analysis of plates on Pasternak foundations by radial basis functions.” Computational Mechanics, Vol. 46, No. 6, pp. 791–803, DOI: 10.1007/s00466-010-0518-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Girija Vallabhan, C. V. and Das, Y. C. (1988). “Parametric study of beams on elastic foundations.” Journal of Engineering Mechanics, Vol. 114, No. 12, pp. 2072–2082, DOI: 10.1061/(ASCE)0733-9399 (1988)114:12(2072).

    Article  Google Scholar 

  • Girija Vallabhan, C. V. and Das, Y. C. (1991a). “A refined model for beams on elastic foundations.” International Journal of Solids and Structures, Vol. 27, No. 5, pp. 629–637, DOI: 10.1016/0020-7683 (91)90217-4.

    Article  Google Scholar 

  • Girija Vallabhan, C. V. and Das, Y. C. (1991b). “Modified Vlasov model for beams on elastic foundations.” Journal of Geotechnical Engineering, Vol. 117, No. 6, pp. 956–966, DOI: 10.1061/(ASCE)0733-9410 (1991)117:6(956).

    Article  Google Scholar 

  • Han, J. B. and Liew, K. M. (1997). “Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations.” International Journal of Mechanical Sciences, Vol. 39, No. 9, pp. 977–989, DOI: 10.1016/S0020-7403(97)00001-5.

    Article  MATH  Google Scholar 

  • Henwood, D. J., Whiteman, J. R., and Yettram, A. L. (1982). “Fourier series solution for a rectangular thick plate with free edges on an elastic foundation.” International Journal for Numerical Methods in Engineering, Vol. 18, No. 12, pp. 1801–1820, DOI: 10.1002/nme.1620181205.

    Article  MATH  Google Scholar 

  • Huang, M. H. and Thambiratnam, D. P. (2001). “Analysis of plate resting on elastic supports and elastic foundation by finite strip method.” Computer & Structures, Vol. 79, Nos. 29-30, pp. 2547–2557, DOI: 10.1016/S0045-7949(01)00134-1.

    Article  Google Scholar 

  • Kobayashi, H. and Sonoda, K. (1989). “Rectangular Mindlin plates on elastic foundations.” International Journal of Mechanical Sciences, Vol. 31, No. 9, pp. 679–692, DOI: 10.1016/S0020-7403(89)80003-7.

    Article  MATH  Google Scholar 

  • Lam, K. Y., Wang, C. M., and He, X. Q. (2000). “Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions.” Engineering Structures, Vol. 22, No. 4, pp. 364–378, DOI: 10.1016/S0141-0296(98)00116-3.

    Article  Google Scholar 

  • Leissa, A. W. (1969) Vibration of plates, National Aeronautics and Space Administration, USA.

    Google Scholar 

  • Leissa, A. W. (1973). “The free vibration of rectangular plates.” Journal of Sound and Vibration, Vol. 31, No. 3, pp. 257–293, DOI: 10.1016/S0022-460X(73)80371-2.

    Article  MATH  Google Scholar 

  • Liew, K. M., Han, J. B., Xiao, Z. M., and Du, H. (1996). “Differential quadrature method for Mindlin plates on Winkler foundations.” International Journal of Mechanical Sciences, Vol. 38, No. 4, pp. 405–421, DOI: 10.1016/0020-7403(95)00062-3.

    Article  MATH  Google Scholar 

  • Liu, F. L. (2000). “Rectangular thick plates on Winkler foundation: differential quadrature element solution.” International Journal of Solids and Structures, Vol. 37, No. 12, pp. 1743–1763, DOI: 10.1016/S0020-7683(98)00306-0.

    Article  MATH  Google Scholar 

  • Matsunaga, H. (2000). “Vibration and stability of thick plates on elastic foundations.” Journal of Engineering Mechanics, Vol. 126, No. 1, pp. 27–34, DOI: 10.1061/(ASCE)0733-9399(2000)126:1(27).

    Article  Google Scholar 

  • Nobakhti, S. and Aghdam, M. M. (2011). “Static analysis of rectangular thick plates resting on two-parameter elastic boundary strips.” European Journal of Mechanics A/Solids, Vol. 30, No. 3, pp. 442–448, DOI: 10.1016/j.euromechsol.2010.12.016.

    Article  MATH  Google Scholar 

  • Ozgan, K. and Daloglu, A. T. (2007). “Alternative plate finite elements for the analysis of thick plates on elastic foundations.” Structural Engineering and Mechanics, Vol. 26, No. 1, pp. 69–86, DOI: 10.12989/sem.2007.26.1.069.

    Article  Google Scholar 

  • Pasternak, P. L. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, USSR.

    Google Scholar 

  • Qin, Q. H. (1995). “Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation.” Computer Methods in Applied Mechanics and Engineering, Vol. 122, Nos. 3-4, pp. 379–392, DOI: 10.1016/0307-904X(94)90357-3.

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy, J. N. (2002) Energy principles and variational methods in applied mechanics, John Wiley & Sons, Inc., Hobeken, New Jersey, USA.

    Google Scholar 

  • Shen, H. S. (1999). “Nonlinear bending of Reissner–Mindlin plates with free edges under transverse and in-plane loads and resting on elastic foundations.” International Journal of Mechanical Sciences, Vol. 41, No. 7, pp. 845–864, DOI: 10.1016/S0020-7403(98)00060-5.

    Article  MATH  Google Scholar 

  • Shen, H. S. (2000). “Nonlinear bending of simply supported rectangular Reissner–Mindlin plates under transverse and in-plane loads and resting on elastic foundations.” Engineering Structures, Vol. 22, No. 7, pp. 847–856, DOI: 10.1016/S0141-0296(99)00044-9.

    Article  Google Scholar 

  • Shen, H. S., Yang, J., and Zhang, L. (2001). “Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundations.” Journal of Sound and Vibration, Vol. 244, No. 2, pp. 299–320, DOI: 10.1006/jsvi.2000.3501.

    Article  Google Scholar 

  • Shimpi, R. P., Patel, H. G., and Arya, H. (2007). “New first-order shear deformation plate theories.” Journal of Applied Mechanics, Vol. 74, No. 3, pp. 523–533, DOI: 10.1115/1.2423036.

    Article  MATH  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2011). “A refined plate theory for functionally graded plates resting on elastic foundation.” Composites Science and Technology, Vol. 71, No. 16, pp. 1850–1858, DOI: 10.1016/j.compscitech.2011.08.016.

    Article  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2012). “A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation.” Composites Part B: Engineering, Vol. 43, No. 5, pp. 2335–2347, DOI: 10.1016/j.compositesb.2011.11.062.

    Article  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2013). “A simple first-order shear deformation theory for laminated composite plates.” Composite Structures, Vol. 106, pp. 754–763, DOI: 10.1016/j.compstruct.2013.06.013.

    Article  Google Scholar 

  • Thai, H. T. and Choi, D. H. (2013). “A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates.” Composite Structures, Vol. 101, pp. 332–340, DOI: 10.1016/j.compstruct.2013.02.019.

    Article  Google Scholar 

  • Thai, H. T., Park, M., and Choi, D. H. (2013). “A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation.” International Journal of Mechanical Sciences, Vol. 73, pp. 40–52, DOI: 10.1016/j.ijmecsci.2013.03.017.

    Article  Google Scholar 

  • Turhan, A. (1992). A consistent Vlasov model for analysis of plates on elastic foundations using the finite element method, PhD Thesis, Texas Tech University, Lubbock, Texas, USA.

    Google Scholar 

  • Wang, C. M., Kitipornchai, S., and Xiang, Y. (1997). “Relationships between buckling loads of Kirchhoff, Mindlin, and Reddy polygonal plates on Pasternak foundation.” Journal of Engineering Mechanics, Vol. 123, No. 11, pp. 1134–1137, DOI: 10.1061/(ASCE)0733-9399 (1997)123:11(1134).

    Article  Google Scholar 

  • Winkler, E. (1867). Die Lehre von der Elasticitaet und Festigkeit, H. Dominicus, Prag.

    Google Scholar 

  • Xiang, Y. (2003). “Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations.” Intetnational Journal of Mechanical Sciences, Vol. 45, Nos. 6-7, pp. 1229–1244, DOI: 10.1016/S0020-7403(03)00141-3.

    Article  MATH  Google Scholar 

  • Xiang, Y., Wang, C. M., and Kitipornchai, S. (1994). “Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations.” International Journal of Mechanical Sciences, Vol. 36, No. 4, pp. 311–316, DOI: 10.1016/0020-7403(94)90037-X.

    Article  MATH  Google Scholar 

  • Yen, D. H. Y. and Tang, S. C. (1971). “On the vibration of an elastic plate on an elastic foundation.” Journal of Sound and Vibration, Vol. 14, No. 1, pp. 81–89, DOI: 10.1016/0022-460X(71)90508-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Yettram, A. L., Whiteman, J. R., and Henwood, D.J. (1984). “Effect of thickness on the behaviour of plates on foundations.” Computer & Structures, Vol. 19, No. 4, pp. 501–509, DOI: 10.1016/0045-7949(84) 90096-8.

    Article  MATH  Google Scholar 

  • Yin, S., Hale, J. S., Yu, T., Bui, T. Q., and Bordas, S. P. A. (2014). “Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates.” Composite Structures, Vol. 118, pp. 121–138, DOI: 10.1016/j.compstruct.2014.07.028.

    Article  Google Scholar 

  • Zenkour, A. M. (2009). “The refined sinusoidal theory for FGM plates on elastic foundations.” International Journal of Mechanical Sciences, Vol. 51, No. 11, pp. 869–880, DOI: 10.1016/j.ijmecsci.2009.09.026.

    Article  Google Scholar 

  • Zenkour, A. M., Allam, M. N. M., Shaker, M. O., and Radwan, A. F. (2011). “On the simple and mixed first-order theories for plates resting on elastic foundations.” Acta Mechanica, Vol. 220, Nos. 1-4, pp. 33–46, DOI: 10.1007/s00707-011-0453-7.

    Article  MATH  Google Scholar 

  • Zhou, D., Cheung, Y. K., Lo, S. H., and Au, F. T. K. (2004). “Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation.” International Journal for Numerical Methods in Engineering, Vol. 59, No. 10, pp. 1313–1334, DOI: 10.1002/nme.915.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Choi, DH. A Simplified First-order Shear Deformation Theory for Bending, Buckling and Free Vibration Analyses of Isotropic Plates on Elastic Foundations. KSCE J Civ Eng 22, 1235–1249 (2018). https://doi.org/10.1007/s12205-017-1517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1517-6

Keywords

Navigation