Skip to main content
Log in

Adsorption of phenol onto Banana Peels Activated Carbon

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The present paper reports adsorption of phenol onto Banana Peels Activated Carbon (BPAC). The effect of adsorbent dose (m), initial pH (pH 0), contact time (t), initial phenol concentration (C o ) and temperature (T) on the adsorption of phenol has been studied using batch experiments. The study revealed that about 83% phenol gets removed at an initial concentration of 50 mg/l, whereas the removal is 60% at an initial concentration of 500 mg/l. The phenol uptake of 6.98 and 48.58 mg per gram of BPAC at respective concentrations was found at an optimum dose of 6 g/l at 303 K. The optimum pH and contact time were found to be 6 and 60 minutes respectively. The pseudo second order kinetic model found best representing the kinetic study. Toth and Redlich-Peterson models were found best suited for describing the adsorption equilibrium data. From thermodynamic study it is confirmed that, phenol adsorption decreases with increase in temperature and is spontaneous and exothermic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelwahab, O. and Amin, N. K. (2013). “Adsorption of phenol from aqueous solution by Luffa cylindrical fibers: Kinetic, isotherm and thermodynamic studies.” Egyptian Journal of Aquatic Research, Vol. 39, No. 4, pp. 215–223, DOI: 10.1016/j.ejar.2013.12.011.

    Article  Google Scholar 

  • Annadurai, G., Juang, R. S., and Lee, D. J. (2002). “Adsorption of heavy metals from water using banana and orange peels.” Water Science and Technology, Vol. 47, No. 1, pp. 185–190.

    Google Scholar 

  • Aravindhan, R., Rao, J. R., and Nair, B. U. (2009). “Application of a chemically modified green macro alga as biosorbent for phenol removal.” Journal of Environmental Management, Vol. 90, No. 5, pp. 1877–1883, DOI: 10.1016/j.jenvman.2008.12.005.

    Article  Google Scholar 

  • Bureau of Indian Standards (BIS) (1984). IS1350 Indian Standard Methods of Test for Coal and Coke Part I Proximate Analysis, 4th Edition, New Delhi.

    Google Scholar 

  • Caetano, M., Valderrama, C., Farran, A., and Cortina, J. L. (2009). “Phenol removal from aqueous solution by adsorption and ion exchange mechanism onto polymer resins.” Journal of Colloid and Interface Science, Vol. 338, No. 2, pp. 402–409, DOI: 10.1016/j.jcis.2009.06.062.

    Article  Google Scholar 

  • Daifullah, A. and Girgis, B. (1998). “Removal of some substituted phenols by activated carbon obtained from agricultural Waste.” Water Research, Vol. 32, No. 4, pp. 1169–1177, DOI: 10.1016/S0043-1354(97)00310-2.

    Article  Google Scholar 

  • Damjanovic, L., Rakic, V., Rac, V., Stosic, D., and Auroux, A. (2010). “The investigation of phenol removal from aqueous solution by zeolite as solid adsorbent.” Journal of Hazardous Materials, Vol. 184, No. 1–3, pp. 477–484, DOI: 10.1016/j.jhazmat.2010.08.059.

    Article  Google Scholar 

  • Dhorabe, P. T., Lataye, D. H., and Ingole, R. S. (2015). “Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia Glauca saw dust.” Water Science & Technology, Vol. 73, No. 4, DOI: 10.2166/wst.2015.575.

  • Duan, X., Ma, F., Yuan, Z., Chang, L., and Jin, X. (2013). “Electrochemical degradation of phenol solution using PbO2 anode.” Journal of Taiwan Institute of Chemical Engineers, Vol. 44, No. 1, pp. 95–102, DOI: 10.1016/j.jtice.2012.08.009.

    Article  Google Scholar 

  • Dursun, G., Cicek, H., and Dursun, A. Y. (2005). “Adsorption of phenol from aqueous solution by using carbonised beet pulp.” Journal of Hazardous Materials, Vol. B125, No. 1-3, pp. 175–182, DOI: 10.1016/j.jhazmat.2005.05.023.

    Article  Google Scholar 

  • Freundlich, H. M. F. (1906). “Over the adsorption in solution.” Journal of Physical Chemistry, Vol. 57, pp. 385–471

    Google Scholar 

  • Girods, P., Dufour, A., Fiero, V., Rogaume, Y., Rogaume, C., Zoulalian, A., and Celzard, A. (2009). “Activated carbon prepared from wood particle board waste: Characterisation and phenol adsorption capacities.” Journal of Hazardous Materials, Vol. 166, No. 1, pp. 491–501, DOI: 10.1016/j.jhazmat.2008.11.047.

    Article  Google Scholar 

  • Golbaz, S., Jafari, A. J., Rafiee, M., and Kalantary, R. R. (2014). “Separate and simultaneous removal of phenol, chromium and cynide from aqueous solution by coagulation/precipitation: Mechanism and theory.” Chemical Engineering Journal, Vol. 253, No. 1, pp. 251–257, DOI: 10.1016/j.cej.2014.05.074.

    Article  Google Scholar 

  • Hameed, B. H. and Rahman, A. A. (2008). “Removal of phenol from aqueous solution by adsorption onto activated carbon prepared from biomass material.” Journal of Hazardous Materials, Vol. 160, No. 2–3, pp. 576–581, DOI: 10.1016/j.jhazmat.2008.03.028.

    Article  Google Scholar 

  • Handbook on Horticulture Statistic (2014). Government of India, Ministry of Agriculture Department of Agriculture and Corporation New Delhi.

  • Ho, Y. S. and McKay, G. (1999). “Pseudo-second order model for sorption processes.” Process Biochemistry, Vol. 34, No. 5, pp. 451–465, DOI: 10.1016/S0032-9592(98)00112-5.

    Article  Google Scholar 

  • Huang, Y., Ma, X., Liang, G., and Yan, H. (2008). “Adsorption of phenol with modified rectorite from aqueous solution.” Chemical Engineering Journal, Vol. 141, No. 1–3, pp. 1–8, DOI: 10.1016/j.cej.2007.10.009.

    Article  Google Scholar 

  • Huang, Q., Tang, J., and Weber, J. W. (2005). “Precipitation of enzyme catalyzed phenol oxidative coupling products: Background ion and pH effect.” Water Research, Vol. 39, No. 13, pp. 3021–3027, DOI: 10.1016/j.watres.2005.05.005.

    Article  Google Scholar 

  • Ingole, R. S. and Lataye, D. H. (2015). “Adsorptive removal of phenol from aqueous solution using activated carbon prepared from babul sawdust.” Journal of Hazardous Toxic and Radioactive Waste, Vol. 19, No. 4, 04015002 1-9, DOI: 10.1061/(ASCE)HZ.2153-5515.0000271.

    Article  Google Scholar 

  • Juang, R., Wu, F., and Tseng, R. (2000). “Mechanism of adsorption of dyes and phenols from water using activated carbon prepared from plume kernels.” Journal of Colloid and Interface Science, Vol. 227, No. 2, pp. 437–444, DOI: 10.1006/jcis.2000.6912.

    Article  Google Scholar 

  • Kennedy, L. J., Vijaya, J. J., Kayalvizhi, K., and Sekaran, G. (2007). “Adsorption of phenol from aqueous solution using mesoporous carbon prepared by two stage process.” Chemical Engineering Journal, Vol. 132, No. 1–3, pp. 279–287, DOI: 10.1016/j.cej.2007.01.009.

    Article  Google Scholar 

  • Kilic, M., Apaydin–Varol, E., and Putun, A. E (2011). “Adsorptive removal of phenol from aqueous solution on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics.” Journal of Hazardous Materials, Vol. 189, No. 1–3, pp. 397–403, DOI: 10.1016/j.jhazmat.2011.02.051.

    Article  Google Scholar 

  • Lakshmi, U., Srivastava, V., Mall, I. D., and Lataye, D. H. (2009). “Rice husk ash as an effective (adsorbent: Evaluation of adsorptive characteristics of Indigo carmine.” Journal of Environmental Management, Vol. 90, No. 2, pp. 710–720, DOI: 10.1016/j.jenvman. 2008.01.002.

    Article  Google Scholar 

  • Langmuir, I. (1918). “The adsorption of gases on plane surfaces of glass, mica and platinum.” J. Am. Chem. Soc., Vol. 40, No. 9, pp. 1361–1403, DOI: 10.1021/ja02242a004.

    Article  Google Scholar 

  • László, K., Bota, A., and Nagy, L. (1997). “Characterization of activated carbon from waste material by adsorption from aqueous solution.” Carbon, Vol. 35, No. 5, pp. 593–598, DOI: 10.1016/S0008-6223(97) 00005-5.

    Article  Google Scholar 

  • Lataye, D. H., Mishra, I. M., and Mall, I. D. (2006). “Removal of pyridine from aqueous solution by adsorption on bagasse Fly Ash.” Industrial & Engineering Chemistry Research, Vol. 45, No. 11, pp. 3934–3943, DOI: 10.1021/ie051315w.

    Article  Google Scholar 

  • Lataye, D. H., Mishra, I. M., and Mall, I. D. (2008a). “Adsorption of 2-picoline onto bagasse fly ash from aqueous solution.” Chemical Engineering Journal, Vol. 138, No. 1–3, pp. 35–46, DOI: 10.1016/j.cej.2007.05.043.

    Article  Google Scholar 

  • Lataye, D. H., Mishra, I. M., and Mall, I. D. (2008b). “Pyridine sorption from aqueous solution by Rice Husk Ash (RHA) and granular activated carbon (GAC): Parametric, kinetic, equilibrium and thermodynamic aspects.” Journal of Hazardous Materials, Vol. 154, No. 1–3, pp. 858–870, DOI: 10.1016/j.jhazmat.2007.10.111.

    Article  Google Scholar 

  • Lataye, D. H., Mishra, I. M., and Mall, I. D. (2009). “Adsorption of a-picoline on granular activated carbon and rice husk ash from aqueous solution: Equilibrium and thermodynamic study.” Chemical Engineering Journal, Vol. 147, No. 2-3, pp 139–149, DOI: 10.1016/j.cej.2008. 06.027.

    Article  Google Scholar 

  • Lataye, D. H., Mishra, I. M., and Mall, I. D. (2011). “Removal of 4-picoline from aqueous solution by adsorption onto bagasse fly ash and rice husk Ash: Equilibrium, thermodynamic and desorption study.” ASCE: Journal of Environmental Engineering, Vol. 137, No. 11, pp 1048–1057, DOI: 10.1061/(ASCE)EE.1943-7870.0000423.

    Google Scholar 

  • Liu, Q., Tong, Z., Peng, W., Ji-Ping, J., and Nan, L. (2010). “Adsorption isotherm, kinetic and mechanism studies of some substituted phenol on activated carbon fibers.” Chemical Engineering Journal, Vol. 157, No. 2–3, pp. 348–356, DOI: 10.1016/j.cej. 2009.11.013.

    Article  Google Scholar 

  • Marquardt, D. W. (1963). “An algorithm for least-squares estimation of nonlinear parameters.” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, pp. 431–441, DOI: 10.1137/0111030.

    Article  MathSciNet  MATH  Google Scholar 

  • Mirmohamadasadeghi, S., Kaghazchi, T., Soleimani, M., and Asasian, N. (2012). “An efficient method for clay modification and its application for phenol removal from wastewater.” Applied Clay Science, Vol. 59-60, pp. 8–12, DOI: 10.1016/j.clay.2012.02.016.

    Article  Google Scholar 

  • Moussavi, G., Mahmoudi, M., and Barikbin, B. (2009). “Biological removal of phenol from strong wastewaters using novel MSBR.” Water Research, Vol. 43, No. 5, pp. 1295–1302, DOI: 10.1016/j.watres.2008.12.026.

    Article  Google Scholar 

  • Mukherjee, S., Kumar, S., Misra, A. K., and Fan, M. (2007). “Removal of phenol from water environment by activated carbon, bagasse ash and wood charcoal.” Chemical Engineering Journal, Vol. 129, No. 1–3, pp. 133–142, DOI: 10.1016/j.cej.2006.10.030.

    Article  Google Scholar 

  • Pacurariu, C., Mihoc, G., Popa, A., Muntean, S. G., and Ianos, R. (2013). “Adsorption of phenol and p-chlorophenol from aqueous solution on poly (Styrene-co-divinylbenzene) functionalized material.” Chemical Engineering Journal, Vol. 222, pp. 218–227, DOI: 10.1016/j.cej. 2013.02.060.

    Article  Google Scholar 

  • Park, K. H., Balathanigaimani, M. S., Shim, W. G., Lee. J. W., and Moon, H. (2010). “Adsorption characteristic of phenol on novel corn grain based activated carbons.” Microporous and Mesoporous Materials, Vol. 127, No. 1–3, pp. 1–8, DOI: 10.1016/j.micromeso.2009.06.032.

    Article  Google Scholar 

  • Pigatto, G., Lodi, A., Finocchio, E., Palma, M., and Converti, A. (2013). “Chitin as biosorbent for phenol removal from aqueous solution: Equilibrium, kinetic and thermodynamic studies.” Chemical Engineering and Processing, Vol. 70, pp. 131–139, DOI: 10.1016/j.cep.2013.04.009.

    Article  Google Scholar 

  • Radhika, M. and Palanivelu, K. (2006). “Adsorptive removal of chlorophenol from aqueous solution by using low cost adsorbents–kinetic and isotherm analysis.” Journal of Hazardous Materials, Vol. B 138, No. 1, pp. 116–124, DOI: 10.1016/j.jhazmat.2006.05.045.

    Article  Google Scholar 

  • Redlich, O. and Peterson, G. L. (1959). “Useful adsorption isotherm.” Journal of Physical Chemistry, Vol. 63, No. 6, pp. 1024–1026, DOI: 10.1021/j150576a611.

    Article  Google Scholar 

  • Senturk, H. B., Ozdes, D., Gundogdu, A., Dura, C., and Soylak, M. (2009). “Removal of phenol from aqueous solution by adsorption onto organomodified Tirebolu bentonite: Equilibrium, Kinetic and thermodynamic study.” Journal of Hazardous Materials, Vol. 172, No. 1, pp. 353–362, DOI: 10.1016/j.jhazmat.2009.07.019.

    Article  Google Scholar 

  • Singh, K., Lataye, D. H., and Wasewar, K. L. (2015). “Removal of fluoride from aqueous solution by using low cost sugarcane bagasse: Kinetic study and equilibrium isotherm analyses.” Journal of Hazardous Toxic and Radioactive Waste, DOI: 10.1061/(ASCE)HZ.2153-5515.0000309.

  • Srivastava, V. C., Swamy, M., Mall, I. D., Prasad, B., and Mishra, I. M. (2006). “Adsorptive removal of phenol by baggase fly ash and activated carbon: Equilibrium, kinetics and thermodynamics.” Colloids and Surface A: Physicochem. Eng. Aspects, Vol. 272, No. 1–3, pp. 89–104, DOI: 10.1016/j.colsurfa.2005.07.016.

    Article  Google Scholar 

  • Su, J., Lin, H. F., Wang, Q. P., Xie, Z. M., and Chen, Z. (2011). “Adsorption of phenol from aqueous solutions by organomontmorillonite.” Desalination, Vol. 269, No. 1–3, pp. 163–169, DOI: 10.1016/j.desal.2010.10.056.

    Article  Google Scholar 

  • Suresh, S., Srivastava, V. C., and Mishra, I. M. (2011). “Adsorption of hydroquinone in aqueous solution by Granulated acticated carbon.” Journal of Environmental Engineering, Vol. 137, No. 12, pp. 1145–1157, DOI: 10.1061/(ASCE)EE.1943-7870.0000443.

    Article  Google Scholar 

  • Temkin, M. I. and Pyzhev, V. (1940). “Kinetics of ammonia synthesis on promoted iron catalysts.” Acta Physiochimica URSS, Vol. 12, pp. 327–356.

    Google Scholar 

  • Toth, J. (1971). “State equations of the solid gas interface layer.” Acta Chimica Academiae Scientiarum Hungaricae, Vol. 69, pp. 311–317.

    Google Scholar 

  • Viraraghavan, T. and Alfaro, F. (1998). “Adsorption of phenol from wastewater by peat, fly ash and bentonite.” Journal of Hazardous Materials, Vol. 57, No. 1–3, pp. 59–70, DOI: 10.1016/S0304-3894 (97)00062-9.

    Article  Google Scholar 

  • Weber, J. W. and Morris, J. C. (1963). “Kinetics of adsorption on carbon from solution.” ASCE Journal of the Sanitary Engineering division, Vol. 89, No. SA2, pp. 31–59.

    Google Scholar 

  • Yousef, R., Eswed, B., and Muhtaseb, A. (2011). “Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism and thermodynamics studies.” Chemical Engineering Journal, Vol. 171, No. 3, pp. 1143–1149, DOI: 10.1016/j.cej.2011.05.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip H. Lataye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingole, R.S., Lataye, D.H. & Dhorabe, P.T. Adsorption of phenol onto Banana Peels Activated Carbon. KSCE J Civ Eng 21, 100–110 (2017). https://doi.org/10.1007/s12205-016-0101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0101-9

Keywords

Navigation