Skip to main content
Log in

Influence de la teneur en eau et de la température sur la conductivité thermique du béton cellulaire autoclavé

  • Published:
Materials and Structures Aims and scope Submit manuscript

Résumé

Pour mesurer simultanément sur quatre échantillons l'évolution de la conductivité thermique en fonction de la température, un dispositif expérimental spécifique, entièrement piloté par ordinateur, a été développé en intégrant quatre sondes à chocs thermiques ‘monotiges’ dans une étuve chaud/froid. Nous avons choisi d'explorer la gamme des températures comprises entre 0 et 60°C. Une série de teneurs en eau entre l'état saturé et l'état sec ont été réalisées par séchage progressif au four à micro-ondes. Sept échantillons de béton cellulaire autoclavé avec des masses volumiques allant de 270 à 630 kg m−3 ont été sélectionnés et leurs relations conductivité thermique-teneur en eau-température complètement déterminées. Sur la base de ces résultats, deux modèles d'estimation de la conductivité thermique du béton cellulaire autoclavé en fonction de ses caractéristiques et de son état hygrothermique ont pu être construits et validés; l'un nécessite la connaissance des propriétés thermiques de la ‘matrice solide’ microporeuse entourant la macroporosité cellulaire, l'autre se place à une autre échelle en considérant, cette fois, les propriétés du ‘grain’ solide non-poreux. Ces deux modèles présentent des caractères prédictifs équivalents et l'on choisira l'un ou l'autre suivant les données dont on dispose.

Summary

An experimental facility entirely controlled by a computer and using the ‘line source method” for measuring the thermal conductivity has been developed to characterize the evolution of this parameter with water content and temperature on four samples of autoclaved aerated concrete (AAC) blocks simultaneously. The temperature range studied was 0–60°C in steps of 10°C. A series of water contents from completely saturated to completely dry was established by progressive drying in a microwave oven. This technique ensures homogeneous distribution of the water inside the material. Seven samples of AAC blocks with densities between 270 kgm−3 and 630 kg m−3 were used and their overall temperature/water content/thermal conductivity relationships determined. A thermal conductivity estimation method has been developed and tested, on this database.

We put forward the following procedure. 1. ‘Pure’ thermal conductivity, i.e., without taking into account the vaporization/condensation effects occurring in the porous space, has first to be estimated. For this purpose, one can simply do a linear interpolation between the thermal conductivities for the dry and saturated states, or two parallel models that we have constructed by electrical analogy can also be used. The first model achieves a separation between the microporous solid matrix and the macroporous cellular material. The second considers that the solid phase controls the heat flux inside the material through the contacts between this phase and the others: liquid and air. For these two models, formulas are given for determining the parameters and both give similar results. So, one or the other can be chosen depending on what kind of data are available. 2. Then, according to De Vries, the contribution of the ‘apparent’ thermal conductivity of the humid air has to be added. This parameter, depends only on temperature, and can be obtained from humid air physical properties tables. The factor f that characterizes the interaction of the porous structure with vapour diffusion must be known, and we give a relation between f and the saturation rate for AAC.

With this method, for any temperature or water content, the results are within 10% of actual values, which is quite satisfactory, especially if one considers the errors that can occur if the influence of temperature is not taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bennett, R. P., Furgeaud, R. et Paljak, I., ‘Le béton cellulaire autoclavé: Propriétés et utilisation’,Annales de l'ITBTP (376) (1979) 74–102.

    Google Scholar 

  2. Weber, H., ‘Das Poren Beton Handbuch’ (Bauverlag, Wiesbaden, Berlin, 1991).

    Google Scholar 

  3. Prim, P. et Wittmann, F. H., ‘Structure and water absorption of aerated concrete’, dans,’ Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, Amsterdam, 1983) pp. 55–70.

    Google Scholar 

  4. Laurent, J. P., ‘La conductivité thermique à sec des bétons cellulaires autoclavés: un modèle conceptuel’,Mater. Struct. 24 (1991) 221–226.

    MathSciNet  Google Scholar 

  5. Bave, G., ‘Regional climatic conditions, building physics and economics,’ dans ‘Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, Amsterdam, 1983) pp. 1–12.

    Google Scholar 

  6. Van Der Kooi, K., ‘Moisture transport in cellular concrete roofs’, thesis, Institute of Applied Physics, TNO-TH, Delft, Netherlands, 1971.

    Google Scholar 

  7. Spooner, D. C., ‘Results of a round robin thermal conductivity test organized on behalf of the British Standards Institution’,Mag. Concr. Res. 32 (1980) 117–125.

    Article  Google Scholar 

  8. Svanholm, G., ‘Influence of water content on properties’, dans’ Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, Amsterdam, 1983), pp. 119–129.

    Google Scholar 

  9. Loudon, A. G., ‘The effect of moisture content on thermal conductivity’,ibid ‘, pp. 131–142.

    Google Scholar 

  10. Hums, D., ‘Relation between humidity and heat conductivity in aerated concrete’,ibid, pp. 143–152.

    Google Scholar 

  11. Sandberg, I., ‘The effect of moisture content on thermal conductivity of aerated concrete’ (Swedish National Testing Institute, Boras, Sweden, 1983).

    Google Scholar 

  12. ‘Catalogue of materials properties’, report, Annex XIV: Condensation and Energy (International Energy Agency, 1991).

  13. Frey, E., ‘Recent results on thermal conductivity and hygroscopic content of AAC’, dans ‘Advances in Autoclaved Aerated Concrete’ (Balkema, Rotterdam, 1992) pp. 89–92.

    Google Scholar 

  14. Lippe, K. F., ‘The effect of moisture on thermal conductivity of AAC’,ibid ‘, pp. 99–102.

    Google Scholar 

  15. Azizi, S., Moyne, C., et Degiovanni A., ‘Approche expérimentale et théorique de la conductivité thermique des milieux poreux humides-I. Expérimentation’,Int. J. Heat Mass Transfer 31 (1988) 2305–2317.

    Article  Google Scholar 

  16. Hladik, J., ‘Filet cylindre chauds en régime instationnaire’, dans ‘Métrologie des Propriétés Thermophysiques des Matériaux’ (Masson, Paris, 1990), pp. 141–160.

    Google Scholar 

  17. RILEM, CPC 11.3, ‘Absorption d'eau par immersion sous vide’,Mater. Struct. 17 (1984) 391–394.

    Google Scholar 

  18. Horton, R., Wierenga, P. J. et Nielsen, D. R., ‘A rapid technique for obtaining uniform water content distributions in unsaturated soil columns’,Soil Sci. 133 (1982) 397–399.

    Google Scholar 

  19. Nielsen, A. F., ‘Gamma ray-attenuation used on free-water intake tests’, dans ‘Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, Amsterdam, 1983) pp. 43–53.

    Google Scholar 

  20. ‘Propriétés physiques de quelques fluides utilisés dans les échangeurs de chaleur, tableaux de valeurs numériques et formules de lissage’ (Cétiat, Villeurbanne, 1989).

  21. Jackson, K. W. et Black, W. Z., ‘A unit cell model for predicting the thermal conductivity of a granular meduum containing an adhesive binder’,Int. J. Heat Mass Transfer 26 (1983) 87–99.

    Google Scholar 

  22. Horai, Ki-Iti, ‘Thermal conductivity of rock-forming minerals’,J. Geophys. Res. 76 (1971) 1278–1308.

    Article  Google Scholar 

  23. Philip, J. R. et De Vries, D. A., ‘Moisture movement in porous materials under temperature gradients’,Trans. Amer. Geophys. Union 38 (1957) 222–232.

    Google Scholar 

  24. Daïan, J. F. et Bellini da Cunha, J. A., ‘Experimental determination of AAC moisture coefficients under temperature gradients’, dans ‘Advances in Autoclaved Aerated Concrete’ (Balkema, Rotterdam, 1992) pp. 105–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, J.P., Guerre-Chaley, C. Influence de la teneur en eau et de la température sur la conductivité thermique du béton cellulaire autoclavé. Materials and Structures 28, 464–472 (1995). https://doi.org/10.1007/BF02473166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473166

Navigation