Skip to main content
Log in

Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this paper, a new structure of highly nonlinear low dispersion photonic crystal fiber (HNPCF) by elliptical concentration of GeO2 in the PCF core has been proposed. Using finite difference time domain (FDTD) method, we have analyzed the dispersion properties and effective mode area in the HN-PCF. Simulative results show that the dispersion variation is within ±0.65 ps/(nm·km) in C-band, especially 0.24 ps/(nm·km) in 1.55 μm wavelength. Effective area and nonlinear coefficient are 1.764 μm2 and 72.6W−1·km−1 respectively at 1.55 μm wavelength. The proposed PCF demonstrates high nonlinear coefficient, ultra small effective mode area and nearly-zero flattened dispersion characteristics over Cband, which can have important application in all-optical wavelength conversion based on four wave mixing (FWM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geraghty D F, Lee R B, Verdiell M, Ziari M, Mathur A, Vahala K J. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(5): 1146–1155

    Article  Google Scholar 

  2. Bhuiyan M N, Matsuura M, Nguyen Tan H, Kishi N. Polarization-insensitive and widely tunable wavelength conversion for polarization shift keying signal based on four wave mixing in highly nonlinear fiber. Optics Express, 2010, 18(3): 2467–2476

    Article  Google Scholar 

  3. Qasaimeh O. Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photonics Technology Letters, 2004, 16(4): 993–995

    Article  Google Scholar 

  4. Brès C S, Zlatanovic S, Wiberg A O J, Radic S. Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber. Optics Express, 2011, 19(26): B621–B627

    Article  Google Scholar 

  5. Ho M C, Marhic M E, Wong K Y K, Kazovsky L G. Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase. Journal of Lightwave Technology, 2002, 20(3): 469–476

    Article  Google Scholar 

  6. Kanka J. Design of photonic crystal fibers with highly nonlinear glasses for four-wave-mixing based telecom applications. Optics Express, 2008, 16(25): 20395–20408

    Article  Google Scholar 

  7. Cerqueira S A Jr, Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C. Highly efficient generation of broadband cascaded four-wave mixing products. Optics Express, 2008, 16(4): 2816–2828

    Article  Google Scholar 

  8. Zhang A, Demokan MS. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Optics Letters, 2005, 30(18): 2375–2377

    Article  Google Scholar 

  9. Russell P. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12): 4729–4749

    Article  Google Scholar 

  10. Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365–8371

    Article  Google Scholar 

  11. Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express, 2003, 11(8): 843–852

    Article  Google Scholar 

  12. Chow K K, Kikuchi K, Nagashima T, Hasegawa T, Ohara S, Sugimoto N. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber. Optics Express, 2007, 15(23): 15418–15423

    Article  Google Scholar 

  13. Wang Z, Liu H, Huang N, Sun Q, Wen J. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides. Optics Express, 2012, 20(8): 8920–8928

    Article  Google Scholar 

  14. Dong L, Thomas B K, Fu L. Highly nonlinear silica suspended core fibers. Optics Express, 2008, 16(21): 16423–16430

    Article  Google Scholar 

  15. Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027–2032

    Article  Google Scholar 

  16. Xu Q, Miao R, Zhang Y. Highly nonlinear low-dispersion photonic crystal fiber with high birefringence for four-wave mixing. Optical Materials, 2012, 35(2): 217–221

    Article  MathSciNet  Google Scholar 

  17. Sheng X Z, Lou S Q. Influence of deformation holes on properties of photonic crystal fibers. Chinese Physics Letters, 2005, 22(10): 2588–2591

    Article  Google Scholar 

  18. Saitoh K, Koshiba M. Numerical modeling of photonic crystal fibers. Journal of Lightwave Technology, 2005, 23(11): 3580–3590

    Article  Google Scholar 

  19. Sun T T, Kai G Y, Wang Z, Yuan S Z, Dong X Y. Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region. Chinese Optics Letters, 2008, 6(2): 93–95

    Article  Google Scholar 

  20. Butov O V, Golant K M, Tomashuk A L, van Stralen M J N, Breuls A H E. Refractive index dispersion of doped silica for fiber optics. Optics Communications, 2002, 213(4–6): 301–308

    Article  Google Scholar 

  21. Nakajima K, Ohashi M. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers. IEEE Photonics Technology Letters, 2002, 14(4): 492–494

    Article  Google Scholar 

  22. Chen M Y, Subbaraman H, Chen R T. One stage pulse compression at 1554 nm through highly anomalous dispersive photonic crystal fiber. Optics Express, 2011, 19(22): 21809–21817

    Article  Google Scholar 

  23. Wang J, Jiang C, Hu W, Gao M. Modified design of photonic crystal fibers with flattened dispersion. Optics & Laser Technology, 2006, 38(3): 169–172

    Article  Google Scholar 

  24. Udagedara I, Premaratne M, Rukhlenko I D, Hattori H T, Agrawal G P. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Optics Express, 2009, 17(23): 21179–21190

    Article  Google Scholar 

  25. Taniyama H, Sumikura H, Notomi M. Finite-difference timedomain analysis of photonic crystal slab cavities with two-level systems. Optics Express, 2011, 19(23): 23067–23077

    Article  Google Scholar 

  26. Lamont M R, Kuhlmey B T, de Sterke C M. Multi-order dispersion engineering for optimal four-wave mixing. Optics Express, 2008, 16(10): 7551–7563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar E. Monfared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monfared, Y.E., Mojtahedinia, A., Maleki Javan, A.R. et al. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing. Front. Optoelectron. 6, 297–302 (2013). https://doi.org/10.1007/s12200-013-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0336-8

Keywords

Navigation