Skip to main content
Log in

Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC stacked structures prepared in plasma enhanced chemical vapor deposition (PECVD) system. The microstructures were examined by transmission electron microscopy (TEM) and Raman spectroscopy, and results demonstrate the formation of Si QDs. Moreover, p-i-n devices containing Si QDs/SiC multilayers were fabricated, and their photovoltaic property was investigated. It was found that these devices show the good spectral response in a wide wavelength range (400–1200 nm). And it was also observed that by reducing the thickness of SiC layer from 4 to 2 nm, the external quantum efficiency was obviously enhanced and the short circuit current density (J sc) was increased from 17.5 to 28.3 mA/cm2, indicating the collection efficiency of photo-generated carriers was improved due to the reduced SiC barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surana K, Lepage H, Lebrun J M, Doisneau B, Bellet D, Vandroux L, Le Carval G, Baudrit M, Thony P, Mur P. Film-thickness-dependent conduction in ordered Si quantum dot arrays. Nanotechnology, 2012, 23(10): 105401–105410

    Article  Google Scholar 

  2. Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M. Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Japanese Journal of Applied Physics, 2007, 46(35): L833–L835

    Article  Google Scholar 

  3. Baron T, Gentile P, Magnea N, Mur P. Single-electron charging effect in individual Si nanocrystals. Applied Physics Letters, 2001, 79(8): 1175–1177

    Article  Google Scholar 

  4. Conibeer G, Green M A, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lind K L. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 26(511–512): 654–662

    Article  Google Scholar 

  5. Perez-Wurfl I, Ma L, Lin D, Hao X, Green MA, Conibeer G. Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Solar Energy Materials and Solar Cells, 2012, 100: 65–68

    Article  Google Scholar 

  6. Uchida G, Yamamoto K, Sato M, Kawashima Y, Nakahara K, Kamataki K, Itagaki N, Koga K, Shiratani M. Effect of nitridation of Si nanoparticles on the performance of quantum-dot sensitized solar cells. Japanese Journal of Applied Physics, 2012, 51(1): 01AD01–01AD01-5

    Article  Google Scholar 

  7. Conibeer G, Green M A, König D, Perez-Wurfl I, Huang S J, Hao X J, Di D W, Shi L, Shrestha S, Puthen-Veetil B, So Y, Zhang B, Wan Z Y. Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Progress in Photovoltaics: Research and Applications, 2010, 7(19): 813–824

    Google Scholar 

  8. Creazzo T, Redding B, Marchena E, Murakowski J, Prather D W. Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices. Journal of Luminescence, 2010, 130(4): 631–636

    Article  Google Scholar 

  9. Cho E C, Park S W, Hao X J, Song D Y, Conibeer G, Park S C, Green M A. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19(24): 245201–245205

    Article  Google Scholar 

  10. Pi X D, Zhang L, Yang D R. Enhanced the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink. Journal of Physical Chemistry C, 2012, 116(40): 21240–21243

    Article  Google Scholar 

  11. Jiang CW, Green MA. Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. Journal of Applied Physics, 2006, 99(11): 114902–114908

    Article  Google Scholar 

  12. Rui Y J, Li S X, Xu J, Song C, Jiang X F, Li W, Chen K J, Wang Q M, Zuo Y H. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. Journal of Applied Physics, 2011, 110(6): 064322–064327

    Article  Google Scholar 

  13. Li S X, Rui Y J, Cao Y Q, Xu J, Chen K J. Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films. Front. Optoelectron, 2012, 5(1): 107–111

    Article  Google Scholar 

  14. Tsu R, Gonzalez - Hernandez J, ChaoS S, Lee S C, Tanaka K. Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si:F:H alloys. Applied Physics Letters, 1982, 40(6): 534–535

    Article  Google Scholar 

  15. Zhou J, Chen G R, Liu Y, Xu J, Wang T, Wan N, Ma Z Y, Li W, Song C, Chen K J. Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures. Optics Express, 2009, 17(1): 156–162

    Article  Google Scholar 

  16. Rui Y J, Li S X, Xu J, Cao Y Q, Li W, Chen K J. Comparative study of electroluminescence from annealed amorphous SiC single layer and amorphous Si/SiC multilayers. Journal of Non-Crystalline Solids, 2012, 358(17): 2114–2117

    Article  Google Scholar 

  17. Budiman M F, Hu W, Igarashi M, Tsukamoto R, Isoda T, Itoh K M, Yamashita I, Murayama A, Okada Y, Samukawa S. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure. Nanotechnology, 2012, 23(6): 065302–065307

    Article  Google Scholar 

  18. Chiu PW, Roth S. Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions. Applied Physics Letters, 2008, 92(4): 042107-3

    Article  Google Scholar 

  19. Wang Q. High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells. Philosophical Magazine, 2009, 89(28): 2587–2598

    Article  Google Scholar 

  20. Taguchi M, Maruyama E, Tanaka M. Temperature dependence of amorphous/crystalline silicon heterojunction solar cells. Japanese Journal of Applied Physics, 2008, 47(2): 814–818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, YQ., Xu, X., Li, SX. et al. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness. Front. Optoelectron. 6, 228–233 (2013). https://doi.org/10.1007/s12200-013-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0324-z

Keywords

Navigation