Skip to main content
Log in

Temperature effects on output characteristics of quantum dot white light emitting diode

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2014

Abstract

In this paper, we proposed quantum dot (QD) based structure for implementation of white light emitting diode (WLED) based on InGaN/GaN. The proposed structure included three layers of InGaN QD with box shapes and GaN barriers. By using of single band effective mass method and considering strain effect, piezoelectric and spontaneous polarizations internal fields, then solving Schrödinger and Poisson equations self consistently, we obtained electron and hole eigen energies and wave functions. By evaluating dipole moment matrix elements for interband transitions, the output intensity was calculated due to the interband transition between two energy levels with highest emission probability. We adjusted QDs dimensions and material compositions so that the output light can be close to the ideal white light in chromaticity diagrams. Finally, effects of temperature variations on output spectrum and chromaticity coordinates were studied. We demonstrated that temperature variations in the range of 100 to 400 K decrease output intensity, broaden output spectral profile and cause a red shift in three main colors spectrums. This temperature variation deviates (x, y) are coordinated in the chromaticity diagram, but the output color still remains close to white.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687–1689

    Article  Google Scholar 

  2. Nakamura S. Zn-doped InGaN growth and InGaN/A1GaN doubleheterostructure blue-light-emitting diodes. Journal of Crystal Growth, 1994, 145(1–4): 911–917

    Article  Google Scholar 

  3. Vurgaftmana I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815–5875

    Article  Google Scholar 

  4. Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J. Small band gap bowing in In1 − x GaxN alloys. Applied Physics Letters, 2002, 80(25): 4741–4743

    Article  Google Scholar 

  5. Piprek J. Nitride Semiconductor Devices: Principles and Simulation. NewYork: WILEY-VCH, 2007

    Book  Google Scholar 

  6. Allen S C, Steck A J. A nearly ideal phosphor-converted white lightemitting diode. Applied Physics Letters, 2008, 92(14): 143309–143311

    Article  Google Scholar 

  7. Xie R J, Hirosaki N, Kimura N, Sakuma K, Mitomo M. 2-phosphorconverted white light-emitting diodes using oxynitride/ nitride phosphors. Applied Physics Letters, 2007, 90(19): 191101–191103

    Article  Google Scholar 

  8. Khoshnegar M, Sodagar M, Eftekharian A, Khorasani S. Design of a GaN white light-emitting diode through envelope function analysis. IEEE Journal of Quantum Electronics, 2010, 46(2): 228–237

    Article  Google Scholar 

  9. Anikeeva P O, Halpert J E, Bawendi M G, Bulović V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters, 2007, 7(8): 2196–2200

    Article  Google Scholar 

  10. Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005, 308(5726): 1274–1278

    Article  Google Scholar 

  11. Chen C H, Su Y K, Sheu J K, Chen J F, Kuo C H, Lin Y C. Nitridebased cascade near white light-emitting diodes. IEEE Photonics Technology Letters, 2002, 14(7): 908–910

    Article  Google Scholar 

  12. Ozden I, Makarona E, Nurmikko A V, Takeuchi T, Krames M. A dual-wavelength indium gallium nitride quantum well light emitting diode. Applied Physics Letters, 2001, 79(16): 2532–2534

    Article  Google Scholar 

  13. Park K, Kwon M K, Cho C Y, Lim J H, Park S J. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells. Applied Physics Letters, 2008, 92(9): 091110–091112

    Article  Google Scholar 

  14. Shei S C, Sheu J K, Tsai C M, Lai W C, Lee M L, Kuo C H. Emission mechanism of mixed-color InGaN/GaN multi-quantumwell light-emitting diodes. Japanese Journal of Applied Physics, 2006, 45(4): 2463–2466

    Article  Google Scholar 

  15. Rostami A, Rasooli Saghai H, Baghban Asghari Nejad H. A proposal for enhancement of optical nonlinearity in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal. Solid-State Electronics, 2008, 52(7): 1075–1108

    Article  Google Scholar 

  16. Lai C Y, Hsu T M. Polarization field effect on group III-nitride semiconductors. Dissertation for the Doctoral Degree. Taiwan, China, 2003

  17. Winkelnkemper M, Schliwa A, Bimberg D. Interrelation of structural and electronic properties in InxGa1 − x N/GaN quantum dots using an eight-band k·p model. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(15): 155322–155333

    Article  Google Scholar 

  18. Wu Y R, Lin Y Y, Huang H H, Singh J. Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. Applied Physics, 2009, 105: 13117–13123

    Google Scholar 

  19. Ranjan V, Allan G, Priester C, Delerue C. Self-consistent calculations of the optical properties of GaN quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2003, 68(11): 115305–115311

    Article  Google Scholar 

  20. Sakamoto A, Sugawara M. Theoretical calculation of lasing spectra of quantum-dot lasers: effect of homogeneous broadening of optical gain. IEEE Photonics Technology Letters, 2000, 12(2): 107–109

    Article  Google Scholar 

  21. Sugawara M. Self-Assembled InGaAs/GaAs Quantum Dots. London: Academic press, 1999

    Google Scholar 

  22. Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, QE-22(9): 1915–1921

    Article  Google Scholar 

  23. Fairman H S, Brill M H, Hemmendinger H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research and Application, 1998, 22(1): 11–23

    Article  Google Scholar 

  24. Han D S, Asryan L V. Output power of a double tunneling-injection quantum dot laser. Nanotechnology, 2010, 21(1): 15201–15214

    Article  Google Scholar 

  25. Schubert E F, Gessmann T, Kim J K. Light-Emitting Diodes. Cambridge: Cambridge University Press, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Ranjbaran.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12200-014-0385-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjbaran, A. Temperature effects on output characteristics of quantum dot white light emitting diode. Front. Optoelectron. 5, 284–291 (2012). https://doi.org/10.1007/s12200-012-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0275-9

Keywords

Navigation