Skip to main content
Log in

Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Proper vascularization remains critical to the clinical application of engineered tissues. To engineer microvessels in vitro, we and others have delivered endothelial cells through preformed channels into patterned extracellular matrix-based gels. This approach has been limited by the size of endothelial cells in suspension, and results in plugging of channels below ~30 µm in diameter. Here, we examine physical and chemical signals that can augment direct seeding, with the aim of rapidly vascularizing capillary-scale channels. By studying tapered microchannels in type I collagen gels under various conditions, we establish that stiff scaffolds, forward pressure, and elevated cyclic AMP levels promote endothelial stability and that reverse pressure promotes endothelial migration. We applied these results to uniform 20-µm-diameter channels and optimized the magnitudes of pressure, flow, and shear stress to best support endothelial migration and vascular stability. This vascularization strategy is able to form millimeter-long perfusable capillaries within 3 days. Our results indicate how to manipulate the physical and chemical environment to promote rapid vascularization of capillary-scale channels within type I collagen gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Auger, F. A., L. Gibot, and D. Lacroix. The pivotal role of vascularization in tissue engineering. Annu. Rev. Biomed. Eng. 15:177–200, 2013.

    Article  Google Scholar 

  2. Badylak, S. F., D. Taylor, and K. Uygun. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13:27–53, 2011.

    Article  Google Scholar 

  3. Bogorad, M. I., J. DeStefano, J. Karlsson, A. D. Wong, S. Gerecht, and P. C. Searson. In vitro microvessel models. Lab Chip 15:4242–4255, 2015.

    Article  Google Scholar 

  4. Califano, J. P., and C. A. Reinhart-King. Exogenous and endogenous force regulation of endothelial cell behavior. J. Biomech. 43:79–86, 2010.

    Article  Google Scholar 

  5. Chan, K. L. S., A. H. Khankhel, R. L. Thompson, B. J. Coisman, K. H. K. Wong, J. G. Truslow, and J. Tien. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J. Biomed. Mater. Res. A. 102:3186–3195, 2014.

    Article  Google Scholar 

  6. Chan, J. M., I. K. Zervantonakis, T. Rimchala, W. J. Polacheck, J. Whisler, and R. D. Kamm. Engineering of in vitro 3D capillary beds by self-directed angiogenic sprouting. PLoS ONE 7:e50582, 2012.

    Article  Google Scholar 

  7. Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–196, 2006.

    Article  Google Scholar 

  8. Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.

    Article  Google Scholar 

  9. Galie, P. A., D. H. Nguyen, C. K. Choi, D. M. Cohen, P. A. Janmey, and C. S. Chen. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. USA 111:7968–7973, 2014.

    Article  Google Scholar 

  10. Hsu, P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, and S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285:751–759, 2001.

    Article  Google Scholar 

  11. Kim, S., H. Lee, M. Chung, and N. L. Jeon. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500, 2013.

    Article  Google Scholar 

  12. Kiosses, W. B., N. H. McKee, and V. L. Kalnins. Evidence for the migration of aortic endothelial cells towards the heart. Arterioscler. Thromb. Vasc. Biol. 2891:2891–2896, 1997.

    Article  Google Scholar 

  13. Koike, N., D. Fukumura, O. Gralla, P. Au, J. S. Schechner, and R. K. Jain. Creation of long-lasting blood vessels. Nature 428:138–139, 2004.

    Article  Google Scholar 

  14. Leung, A. D., K. H. K. Wong, and J. Tien. Plasma expanders stabilize human microvessels in microfluidic scaffolds. J. Biomed. Mater. Res. A. 100:1815–1822, 2012.

    Article  Google Scholar 

  15. Levenberg, S., J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–884, 2005.

    Article  Google Scholar 

  16. Lovett, M., K. Lee, A. Edwards, and D. L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng. B. 15:353–370, 2009.

    Article  Google Scholar 

  17. Mancuso, M. R., R. Davis, S. M. Norberg, S. O’Brien, B. Sennino, T. Nakahara, V. J. Yao, T. Inai, P. Brooks, B. Freimark, D. R. Shalinsky, D. D. Hu-Lowe, and D. M. McDonald. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116:2610–2621, 2006.

    Article  Google Scholar 

  18. Morgan, J. P., P. F. Delnero, Y. Zheng, S. S. Verbridge, J. Chen, M. Craven, N. W. Choi, A. Diaz-Santana, P. Kermani, B. Hempstead, J. A. Lopez, T. N. Corso, C. Fischbach, and A. D. Stroock. Formation of microvascular networks in vitro. Nat. Protoc. 8:1820–1836, 2013.

    Article  Google Scholar 

  19. Morin, K. T., A. O. Smith, G. E. Davis, and R. T. Tranquillo. Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvasc. Res. 90:12–22, 2013.

    Article  Google Scholar 

  20. Moya, M. L., Y. H. Hsu, A. P. Lee, C. C. Hughes, and S. C. George. In vitro perfused human capillary networks. Tissue Eng. C. 19:730–737, 2013.

    Article  Google Scholar 

  21. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.

    Article  Google Scholar 

  22. Ostrowski, M. A., N. F. Huang, T. W. Walker, T. Verwijlen, C. Poplawski, A. S. Khoo, J. P. Cooke, G. G. Fuller, and A. R. Dunn. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys. J. 106:366–374, 2014.

    Article  Google Scholar 

  23. Ott, H. C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16:927–933, 2010.

    Article  Google Scholar 

  24. Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog, and L. E. Niklason. Tissue-engineered lungs for in vivo implantation. Science 329:538–541, 2010.

    Article  Google Scholar 

  25. Pettersson, A., J. A. Nagy, L. F. Brown, C. Sundberg, E. Morgan, S. Jungles, R. Carter, J. E. Krieger, E. J. Manseau, V. S. Harvey, I. A. Eckelhoefer, D. Feng, A. M. Dvorak, R. C. Mulligan, and H. F. Dvorak. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 80:99–115, 2000.

    Article  Google Scholar 

  26. Price, G. M., K. M. Chrobak, and J. Tien. Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes. Microvasc. Res. 76:46–51, 2008.

    Article  Google Scholar 

  27. Price, G. M., K. H. K. Wong, J. G. Truslow, A. D. Leung, C. Acharya, and J. Tien. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:6182–6189, 2010.

    Article  Google Scholar 

  28. Ren, X., P. T. Moser, S. E. Gilpin, T. Okamoto, T. Wu, L. F. Tapias, F. E. Mercier, L. Xiong, R. Ghawi, D. T. Scadden, D. J. Mathisen, and H. C. Ott. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat. Biotechnol. 33:1097–1102, 2015.

    Article  Google Scholar 

  29. Scarritt, M. E., N. C. Pashos, and B. A. Bunnell. A review of cellularization strategies for tissue engineering of whole organs. Front. Bioeng. Biotechnol. 3:43, 2015.

    Article  Google Scholar 

  30. Tang, M. D., A. P. Golden, and J. Tien. Molding of three-dimensional microstructures of gels. J. Am. Chem. Soc. 125:12988–12989, 2003.

    Article  Google Scholar 

  31. Teichmann, J., A. Morgenstern, J. Seebach, H. J. Schnittler, C. Werner, and T. Pompe. The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage. Biomaterials 33:1959–1969, 2012.

    Article  Google Scholar 

  32. Truslow, J. G., G. M. Price, and J. Tien. Computational design of drainage systems for vascularized scaffolds. Biomaterials 30:4435–4443, 2009.

    Article  Google Scholar 

  33. Vickerman, V., and R. D. Kamm. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell–matrix and cell–cell junctions. Integr. Biol. 4:863–874, 2012.

    Article  Google Scholar 

  34. Whisler, J. A., M. B. Chen, and R. D. Kamm. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. C. 20:543–552, 2014.

    Article  Google Scholar 

  35. Wong, K. H. K., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14:205–230, 2012.

    Article  Google Scholar 

  36. Wong, K. H. K., J. G. Truslow, A. H. Khankhel, K. L. S. Chan, and J. Tien. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J. Biomed. Mater. Res. A. 101:2181–2190, 2013.

    Article  Google Scholar 

  37. Wong, K. H. K., J. G. Truslow, A. H. Khankhel, and J. Tien. Biophysical mechanisms that govern the vascularization of microfluidic scaffolds. In: vascularization, edited by E. M. Brey. Boca Raton: CRC Press, 2014, pp. 109–124.

    Google Scholar 

  38. Wong, K. H. K., J. G. Truslow, and J. Tien. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:4706–4714, 2010.

    Article  Google Scholar 

  39. Yevick, H. G., G. Duclos, I. Bonnet, and P. Silberzan. Architecture and migration of an epithelium on a cylindrical wire. Proc. Natl. Acad. Sci. USA 112:5944–5949, 2015.

    Article  Google Scholar 

  40. Zheng, Y., J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. Lopez, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–9347, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Cliff Brangwynne and Marina Feric for access to their pipette puller, and Aimal Khankhel for assistance with experiments. This work was supported by Boston University through a Dean’s Catalyst Award (J.T.), a Lutchen Fellowship (R.M.L.), and awards from the Undergraduate Research Opportunities Program (R.M.L., N.F.B., G.C.). R.M.L. thanks Mr. and Mrs. William Felder for support through a Summer Term Alumni Research Scholarship at Boston University.

Conflicts of interest

Raleigh M. Linville, Nelson F. Boland, Gil Covarrubias, Gavrielle M. Price, and Joe Tien declare that they have no conflict of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Tien.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linville, R.M., Boland, N.F., Covarrubias, G. et al. Physical and Chemical Signals That Promote Vascularization of Capillary-Scale Channels. Cel. Mol. Bioeng. 9, 73–84 (2016). https://doi.org/10.1007/s12195-016-0429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0429-8

Keywords

Navigation