Skip to main content

Advertisement

Log in

Endothelial Cell Senescence Increases Traction Forces due to Age-Associated Changes in the Glycocalyx and SIRT1

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Endothelial cell (EC) aging and senescence are key events in atherogenesis and cardiovascular disease development. Age-associated changes in the local mechanical environment of blood vessels have also been linked to atherosclerosis. However, the extent to which cell senescence affects mechanical forces generated by the cell is unclear. In this study, we sought to determine whether EC senescence increases traction forces through age-associated changes in the glycocalyx and antioxidant regulator deacetylase Sirtuin1 (SIRT1), which is downregulated during aging. Traction forces were higher in cells that had undergone more population doublings and changes in traction force were associated with altered actin localization. Older cells also had increased actin filament thickness. Depletion of heparan sulfate in young ECs elevated traction forces and actin filament thickness, while addition of heparan sulfate to the surface of aged ECs by treatment with angiopoietin-1 had the opposite effect. While inhibition of SIRT1 had no significant effect on traction forces or actin organization for young cells, activation of SIRT1 did reduce traction forces and increase peripheral actin in aged ECs. These results show that EC senescence increases traction forces and alters actin localization through changes to SIRT1 and the glycocalyx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3(5):466–472, 2001.

    Article  Google Scholar 

  2. Beningo, K. A., M. Dembo, I. Kaverina, J. V. Small, and Y.-L. Wang. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153(4):881–888, 2001. doi:10.1083/jcb.153.4.881.

    Article  Google Scholar 

  3. Brown, M. A., C. S. Wallace, M. Angelos, and G. A. Truskey. Characterization of umbilical cord blood-derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng. Part A 15(11):3575–3587, 2009. doi:10.1089/ten.tea.2008.0444.

    Article  Google Scholar 

  4. Burrig, K. The endothelium of advanced arteriosclerotic plaques in humans. Arterioscler. Thromb. Vasc. Biol. 11(6):1678–1689, 1991. doi:10.1161/01.atv.11.6.1678.

    Article  Google Scholar 

  5. Cai, H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68(1):26–36, 2005. doi:10.1016/j.cardiores.2005.06.021.

    Article  Google Scholar 

  6. Califano, J., and C. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1):68–75, 2010. doi:10.1007/s12195-010-0102-6.

    Article  Google Scholar 

  7. Cao, L., A. Wu, and G. A. Truskey. Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. J. Biomech. 44(11):2150–2157, 2011.

    Article  Google Scholar 

  8. Chappell, D., M. Jacob, M. Rehm, M. Stoeckelhuber, U. Welsch, P. Conzen, and B. F. Becker. Heparinase selectively sheds heparan sulfate from the endothelial glycocalyx. Biol. Chem. 389(1):79–82, 2007.

    Google Scholar 

  9. Chen, Z., I.-C. Peng, X. Cui, Y.-S. Li, S. Chien, and J. Y.-J. Shyy. Shear stress, sirt1, and vascular homeostasis. Proc. Natl. Acad. Sci. 107(22):10268–10273, 2010. doi:10.1073/pnas.1003833107.

    Article  Google Scholar 

  10. Cheung, T., M. Ganatra, J. Fu, and G. Truskey. The effect of stress-induced senescence on aging human cord blood-derived endothelial cells. Cardiovasc. Eng. Technol. 4(2):220–230, 2013. doi:10.1007/s13239-013-0128-8.

    Article  Google Scholar 

  11. Cheung, T. M., M. P. Ganatra, E. B. Peters, and G. A. Truskey. The effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 303(11):H1374–H1383, 2012. doi:10.1152/ajpheart.00182.2012.

    Article  Google Scholar 

  12. Chi, Q., T. Yin, H. Gregersen, X. Deng, Y. Fan, J. Zhao, D. Liao, and G. Wang. Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechano-chemical coupling mechanism. J. R. Soc. Interface 11(95):20131072, 2014. doi:10.1098/rsif.2013.1072.

    Article  Google Scholar 

  13. Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88(1):39–48, 1997. doi:10.1016/S0092-8674(00)81856-5.

    Article  Google Scholar 

  14. Cullere, X., S. K. Shaw, L. Andersson, J. Hirahashi, F. W. Luscinskas, and T. N. Mayadas. Regulation of vascular endothelial barrier function by epac, a camp-activated exchange factor for rap gtpase. Blood 105(5):1950–1955, 2005. doi:10.1182/blood-2004-05-1987.

    Article  Google Scholar 

  15. Dumbauld, D. W., T. T. Lee, A. Singh, J. Scrimgeour, C. A. Gersbach, E. A. Zamir, J. Fu, C. S. Chen, J. E. Curtis, S. W. Craig, and A. J. García. How vinculin regulates force transmission. Proc. Natl. Acad. Sci. 110(24):9788–9793, 2013. doi:10.1073/pnas.1216209110.

    Article  Google Scholar 

  16. Ebong, E. E., F. P. Macaluso, D. C. Spray, and J. M. Tarbell. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31(8):1908–1915, 2011. doi:10.1161/atvbaha.111.225268.

    Article  Google Scholar 

  17. Erusalimsky, J. D., and C. Skene. Mechanisms of endothelial senescence. Exp. Physiol. 94(3):299–304, 2009. doi:10.1113/expphysiol.2008.043133.

    Article  Google Scholar 

  18. Galbraith, C. G., K. M. Yamada, and M. P. Sheetz. The relationship between force and focal complex development. J. Cell Biol. 159(4):695–705, 2002. doi:10.1083/jcb.200204153.

    Article  Google Scholar 

  19. Gallant, N. D., K. E. Michael, and A. J. García. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16(9):4329–4340, 2005. doi:10.1091/mbc.E05-02-0170.

    Article  Google Scholar 

  20. Garfinkel, S., X. Hu, I. A. Prudovsky, G. A. McMahon, E. M. Kapnik, S. D. McDowell, and T. Maciag. Fgf-1-dependent proliferative and migratory responses are impaired in senescent human umbilical vein endothelial cells and correlate with the inability to signal tyrosine phosphorylation of fibroblast growth factor receptor-1 substrates. J. Cell Biol. 134(3):783–791, 1996. doi:10.1083/jcb.134.3.783.

    Article  Google Scholar 

  21. Giantsos-Adams, K., A.-A. Koo, S. Song, J. Sakai, J. Sankaran, J. Shin, G. Garcia-Cardena, and C. F. Dewey, Jr. Heparan sulfate regrowth profiles under laminar shear flow following enzymatic degradation. Cell. Mol. Bioeng. 6(2):160–174, 2013. doi:10.1007/s12195-013-0273-z.

    Article  Google Scholar 

  22. Haraldsson, B., J. Nyström, and W. M. Deen. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88(2):451–487, 2008. doi:10.1152/physrev.00055.2006.

    Article  Google Scholar 

  23. Henderson-Toth, C. E., E. D. Jahnsen, R. Jamarani, S. Al-Roubaie, and E. A. V. Jones. The glycocalyx is present as soon as blood flow is initiated and is required for normal vascular development. Dev. Biol. 369(2):330–339, 2012. doi:10.1016/j.ydbio.2012.07.009.

    Article  Google Scholar 

  24. Herrmann, R. A., R. A. Malinauskas, and G. A. Truskey. Characterization of sites of elevated low density lipoprotein at the intercostal, celiac, and iliac branches of the rabbit aorta. Arterioscler. Thromb. Vasc. Biol. 14:313–323, 1994.

    Article  Google Scholar 

  25. Huang, J., H. Deng, X. Peng, S. Li, C. Xiong, and J. Fang. Cellular traction force reconstruction based on a self-adaptive filtering scheme. Cell. Mol. Bioeng. 5(2):205–216, 2012. doi:10.1007/s12195-012-0224-0.

    Article  Google Scholar 

  26. Huang, J., X. Peng, L. Qin, T. Zhu, C. Xiong, Y. Zhang, and J. Fang. Determination of cellular tractions on elastic substrate based on an integral boussinesq solution. J. Biomech. Eng. 131(6):061009, 2009. doi:10.1115/1.3118767.

    Article  Google Scholar 

  27. Huang, J., T. Zhu, X. Pan, L. Qin, X. Peng, C. Xiong, and J. Fang. A high-efficiency digital image correlation method based on a fast recursive scheme. Meas. Sci. Technol. 21:025101, 2010.

    Article  Google Scholar 

  28. Huynh, J., N. Nishimura, K. Rana, J. M. Peloquin, J. P. Califano, C. R. Montague, M. R. King, C. B. Schaffer, and C. A. Reinhart-King. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Trans. Med. 3(112):112ra22, 2011. doi:10.1126/scitranslmed.3002761.

    Article  Google Scholar 

  29. Ingram, D. A., L. E. Mead, D. B. Moore, W. Woodard, A. Fenoglio, and M. C. Yoder. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105(7):2783–2786, 2005. doi:10.1182/blood-2004-08-3057.

    Article  Google Scholar 

  30. Ingram, D. A., L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio, K. Mortell, K. Pollok, M. J. Ferkowicz, D. Gilley, and M. C. Yoder. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760, 2004.

    Article  Google Scholar 

  31. Kuddannaya, S., Y. J. Chuah, M. H. A. Lee, N. V. Menon, Y. Kang, and Y. Zhang. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 5(19):9777–9784, 2013. doi:10.1021/am402903e.

    Article  Google Scholar 

  32. Lam, C. R. I., C. Tan, Z. Teo, C. Y. Tay, T. Phua, Y. L. Wu, P. Q. Cai, L. P. Tan, X. Chen, P. Zhu, and N. S. Tan. Loss of tak1 increases cell traction force in a ros-dependent manner to drive epithelial–mesenchymal transition of cancer cells. Cell Death Dis. 4:e848, 2013. doi:10.1038/cddis.2013.339.

    Article  Google Scholar 

  33. Marechal, X., R. Favory, O. Joulin, D. Montaigne, S. Hassoun, B. Decoster, F. Zerimech, and R. Neviere. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29(5):572–576, 2008. doi:10.1097/SHK.0b013e318157e926.

    Google Scholar 

  34. Minamino, T., H. Miyauchi, T. Yoshida, Y. Ishida, H. Yoshida, and I. Komuro. Endothelial cell senescence in human atherosclerosis. Circulation 105:1541–1544, 2002.

    Article  Google Scholar 

  35. Moldovan, L., K. Mythreye, P. J. Goldschmidt-Clermont, and L. L. Satterwhite. Reactive oxygen species in vascular endothelial cell motility. Roles of nad(p)h oxidase and rac1. Cardiovasc. Res. 71(2):236–246, 2006. doi:10.1016/j.cardiores.2006.05.003.

    Article  Google Scholar 

  36. Nielsen, L. B., B. G. Nordestgaard, S. Stender, and K. Kjeldsen. Aortic permeability to ldl as a predictor of aortic cholesterol accumulation in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. 12:1402–1409, 1992.

    Article  Google Scholar 

  37. Ogami, M., Y. Ikura, M. Ohsawa, T. Matsuo, S. Kayo, N. Yoshimi, E. Hai, N. Shirai, S. Ehara, R. Komatsu, T. Naruko, and M. Ueda. Telomere shortening in human coronary artery diseases. Arterioscler. Thromb. Vasc. Biol. 24:546–550, 2004.

    Article  Google Scholar 

  38. Okayama, N., C. G. Kevil, L. Correia, D. Jourd’Heuil, M. Itoh, M. B. Grisham, and J. S. Alexander. Nitric oxide enhances hydrogen peroxide-mediated endothelial permeability in vitro. Am. J. Physiol 273(5):C1581–C1587, 1997.

    Google Scholar 

  39. Pahakis, M. Y., J. R. Kosky, R. O. Dull, and J. M. Tarbell. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 355(1):228–233, 2007. doi:10.1016/j.bbrc.2007.01.137.

    Article  Google Scholar 

  40. Park, S.-J., F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A. L. Brown, M. K. Kim, M. A. Beaven, A. B. Burgin, V. Manganiello, and J. H. Chung. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting camp phosphodiesterases. Cell 148(3):421–433, 2012. doi:10.1016/j.cell.2012.01.017.

    Article  Google Scholar 

  41. Pollard, T., W. Earnshaw, and J. Lippincott-Schwartz. Cell biology. Philadelphia, PA, USA: Elsevier Inc, 2008.

    Google Scholar 

  42. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Endothelial cell traction forces on rgd-derivatized polyacrylamide substrata. Langmuir 19(5):1573–1579, 2002. doi:10.1021/la026142j.

    Article  Google Scholar 

  43. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J . 89(1):676–689, 2005. doi:10.1529/biophysj.104.054320.

    Article  Google Scholar 

  44. Reitsma, S., D. Slaaf, H. Vink, M. M. J. van Zandvoort, and M. A. oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. Eur. J. Physiol. 454(3):345–359, 2007. doi:10.1007/s00424-007-0212-8.

    Article  Google Scholar 

  45. Resolution in a confocal system. http://microscopy.berkeley.edu/courses/TLM/clsm/resolution.html. Accessed 30 Oct 2014.

  46. Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. J. Cell Biol. 153(6):1175–1186, 2001. doi:10.1083/jcb.153.6.1175.

    Article  Google Scholar 

  47. Salmon, A. H. J., C. R. Neal, L. M. Sage, C. A. Glass, S. J. Harper, and D. O. Bates. Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc. Res. 83(1):24–33, 2009. doi:10.1093/cvr/cvp093.

    Article  Google Scholar 

  48. Salmon, A. H. J., and S. C. Satchell. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol. 226(4):562–574, 2012. doi:10.1002/path.3964.

    Article  Google Scholar 

  49. Schiller, H. B., M.-R. Hermann, J. Polleux, T. Vignaud, S. Zanivan, C. C. Friedel, Z. Sun, A. Raducanu, K.-E. Gottschalk, M. Théry, M. Mann, and R. Fässler. Β1- and αv-class integrins cooperate to regulate myosin ii during rigidity sensing of fibronectin-based microenvironments. Nat. Cell Biol. 15(6):625–636, 2013. doi:10.1038/ncb2747.

  50. Silacci, P., A. Desgeorges, L. Mazzolai, C. Chambaz, and D. Hayoz. Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38(5):1162–1166, 2001. doi:10.1161/hy1101.095993.

    Article  Google Scholar 

  51. Sun, C., X. Liu, L. Qi, J. Xu, J. Zhao, Y. Zhang, S. Zhang, and J. Miao. Modulation of vascular endothelial cell senescence by integrin β4. J. Cell. Physiol. 225(3):673–681, 2010. doi:10.1002/jcp.22262.

    Article  Google Scholar 

  52. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87(2):320–330, 2010. doi:10.1093/cvr/cvq146.

    Article  Google Scholar 

  53. Thi, M. M., J. M. Tarbell, S. Weinbaum, and D. C. Spray. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. 101(47):16483–16488, 2004. doi:10.1073/pnas.0407474101.

    Article  Google Scholar 

  54. Thompson, P. M., C. E. Tolbert, K. Shen, P. Kota, S. M. Palmer, K. M. Plevock, A. Orlova, V. E. Galkin, K. Burridge, E. H. Egelman, N. V. Dokholyan, R. Superfine, and S. L. Campbell. Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Structure 22(5):697–706, 2014. doi:10.1016/j.str.2014.03.002.

    Article  Google Scholar 

  55. Ting, L., J. Jessica, R. Jahn, J. Jung, B. Shuman, S. Feghhi, S. Han, M. Rodriguez, and N. Sniadecki. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am. J. Physiol. 302:H2220–H2229, 2012.

    Google Scholar 

  56. van den Berg, B. M., J. A. E. Spaan, T. M. Rolf, and H. Vink. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. 290(2):H915–H920, 2006. doi:10.1152/ajpheart.00051.2005.

    Google Scholar 

  57. van der Loo, B., M. J. Fenton, and J. D. Erusalimsky. Cytochemical detection of a senescence-associated β-galactosidase in endothelial and smooth muscle cells from human and rabbit blood vessels. Exp. Cell Res. 241(2):309–315, 1998. doi:10.1006/excr.1998.4035.

    Article  Google Scholar 

  58. van Popele, N. M., D. E. Grobbee, M. L. Bots, R. Asmar, J. Topouchian, R. S. Reneman, A. P. G. Hoeks, D. A. M. van der Kuip, A. Hofman, and J. C. M. Witteman. Association between arterial stiffness and atherosclerosis: the rotterdam study. Stroke 32(2):454–460, 2001. doi:10.1161/01.str.32.2.454.

    Article  Google Scholar 

  59. Wallace, C. S., S. A. Strike, and G. A. Truskey. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture. Am. J. Physiol. 293(3):H1978–H1986, 2007. doi:10.1152/ajpheart.00618.2007.

    Google Scholar 

  60. Wang, Y.-L., and R. J. Pelham, Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998. doi:10.1016/S0076-6879(98)98041-7.

    Article  Google Scholar 

  61. Wen, J. H., L. G. Vincent, A. Fuhrmann, Y. S. Choi, K. C. Hribar, H. Taylor-Weiner, S. Chen, and A. J. Engler. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13(10):979–987, 2014. doi:10.1038/nmat4051.

  62. Wojciak-Stothard, B., S. Potempa, T. Eichholtz, and A. J. Ridley. 9rgr; and rac but not cdc42 regulate endothelial cell permeability. J. Cell. Sci. 114(7):1343–1355, 2001.

    Google Scholar 

  63. Yao, Y., A. Rabodzey, and C. F. Dewey. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. 293(2):H1023–H1030, 2007. doi:10.1152/ajpheart.00162.2007.

    Google Scholar 

  64. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60(1):24–34, 2005. doi:10.1002/cm.20041.

    Article  Google Scholar 

  65. Zeng, Y., and J. M. Tarbell. The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS ONE 9(1):e86249, 2014. doi:10.1371/journal.pone.0086249.

    Article  Google Scholar 

  66. Zu, Y., L. Liu, M. Y. K. Lee, C. Xu, Y. Liang, R. Y. Man, P. M. Vanhoutte, and Y. Wang. Sirt1 promotes proliferation and prevents senescence through targeting lkb1 in primary porcine aortic endothelial cells. Circ. Res. 106(8):1384–1393, 2010. doi:10.1161/circresaha.109.215483.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a NSF Graduate Research Fellowship (T.M.C.), a McChesney Graduate Fellowship (T.M.C.), an Undergraduate Research Support Assistantship (J.B.Y.), and a Pratt Research Fellowship (J.J.F.).

Conflict of Interest

Tracy M. Cheung, Jessica B. Yan, Justin J. Fu, Jianyong Huang, Fan Yuan, and George A. Truskey declare that they have no conflict of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Truskey.

Additional information

Associate Editor Roger Kamm oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, T.M., Yan, J.B., Fu, J.J. et al. Endothelial Cell Senescence Increases Traction Forces due to Age-Associated Changes in the Glycocalyx and SIRT1. Cel. Mol. Bioeng. 8, 63–75 (2015). https://doi.org/10.1007/s12195-014-0371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0371-6

Keywords

Navigation